Dmitry A Spassky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671947/publications.pdf

Version: 2024-02-01

186265 243625 2,561 121 28 44 citations g-index h-index papers 121 121 121 1885 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Whitlockite-Type Structure as a Matrix for Optical Materials: Synthesis and Characterization of Novel TM-SM Co-Doped Phosphate Ca9Gd(PO4)7, a Single-Phase White Light Phosphors. Minerals (Basel,) Tj ETQq1 1 0.	.728 4 314 rg	g B T /Over oc
2	Influence of anionic substitutions on the luminescent properties of Ca9.75Eu0.5(VO4)7. Journal of Solid State Chemistry, 2022, 308, 122884.	2.9	4
3	Structural, optical and luminescent properties of undoped Gd3AlxGa5-xO12 (x = 0,1,2,3) and Gd2YAl2Ga3O12 single crystals. Optical Materials, 2022, 125, 112079.	3.6	12
4	«Ellestadite»-type anionic [PO4]3– → [SO4]2– substitutions in β-Ca3(PO4)2 type compounds: A new rou to design the inorganic phosphors. Ceramics International, 2022, 48, 24012-24020.	te 4.8	6
5	K ₅ Eu _{1–<i>x</i>} Tb <i>_x</i> (MoO ₄) ₄ Phosphors for Solid-State Lighting Applications: Aperiodic Structures and the Tb ³⁺ → Eu ³⁺ Energy Transfer. Inorganic Chemistry, 2022, 61, 7910-7921.	4.0	7
6	A novel high color purity blue-emitting Tm3+-doped \hat{l}^2 -Ca3(PO4)2-type phosphor for WLED application. Optik, 2021, 227, 166027.	2.9	9
7	Role of the Eu ³⁺ Distribution on the Properties of β-Ca ₃ (PO ₄) ₂ Phosphors: Structural, Luminescent, and ¹⁵¹ Eu M¶ssbauer Spectroscopy Study of Ca _{9.5†1.5<i>x</i>} MgEu _{<i>x</i>} (PO ₄) ₇ . Inorganic	4.0	18
8	Chemistry, 2021, 60, 3961-3971. Electron and hole trapping in Li2MoO4 cryogenic scintillator. Optical Materials, 2021, 114, 110971.	3.6	7
9	KTb(MoO ₄) ₂ Green Phosphor with K ⁺ -lon Conductivity: Derived from Different Synthesis Routes. Inorganic Chemistry, 2021, 60, 9471-9483.	4.0	8
10	Ultrafast and slow Mn2+ luminescence in lithium tetraborate. Journal of Alloys and Compounds, 2021, 883, 160852.	5.5	5
11	Luminescent and structural properties of ScxY1-xVO4:Eu3+ solid solutions. Journal of Luminescence, 2021, 240, 118448.	3.1	6
12	Sr8MSm1-Eu (PO4)7 phosphors derived by different synthesis routes: Solid state, sol-gel and hydrothermal, the comparison of properties. Journal of Alloys and Compounds, 2021, 887, 161340.	5.5	9
13	Novel NASICON-type Na3.6Y1.8-(PO4)3:xDy3+ phosphor: Structure and luminescence. Optical Materials, 2021, 122, 111738.	3.6	6
14	The influence of second coordination-sphere interactions on the luminescent properties of \hat{l}^2 -Ca3(PO4)2-related compounds. Journal of Alloys and Compounds, 2020, 815, 152352.	5.5	20
15	Urbach Rule and Estimation of the Energy Gap Width in Molybdates. Physics of the Solid State, 2020, 62, 1325-1332.	0.6	10
16	Energy transfer to luminescent impurity by thermally quenching excitons in CdWO4:Sm. Journal of Luminescence, 2020, 228, 117609.	3.1	7
17	Enhancement of Light Output in ScxY1â°'xPO4:Eu3+ Solid Solutions. Symmetry, 2020, 12, 946.	2.2	4
18	Influence of the Sc cation substituent on the structural properties and energy transfer processes in GAGG:Ce crystals. CrystEngComm, 2020, 22, 2621-2631.	2.6	15

#	Article	IF	CITATIONS
19	Epitaxial growth of Ce-doped (Pb,Gd)3(Al,Ga)5O12 films and their optical and scintillation properties. Journal of Science: Advanced Materials and Devices, 2020, 5, 95-103.	3.1	2
20	Diamond–Rare Earth Composites with Embedded NaGdF ₄ :Eu Nanoparticles as Robust Photo- and X-ray-Luminescent Materials for Radiation Monitoring Screens. ACS Applied Nano Materials, 2020, 3, 1324-1331.	5.0	20
21	Tunable luminescence and energy transfer in Eu3+ doped Ca8MTb(PO4)7 (M = Mg, Zn, Ca) phosphors. Materials Research Bulletin, 2020, 130, 110925.	5.2	13
22	Structural Features of ZnxMg1–ÂxWO4 Mixed Crystals. Crystallography Reports, 2020, 65, 857-861.	0.6	1
23	Luminescence of Eu ³⁺ as a probe for the determination of the local site symmetry in β-Ca ₃ (PO ₄) ₂ -related structures. CrystEngComm, 2019, 21, 5235-5242.	2.6	24
24	Study of charge carrier trapping by EPR and TSL methods in ZnxMg1-xWO4 single crystals. Optical Materials, 2019, 96, 109362.	3.6	3
25	(Ca,Mg)9Gd1 –xEux(PO4)7 Red Phosphors Activated with Gd3+ and Eu3+. Inorganic Materials, 2019, 55, 810-814.	0.8	4
26	Crystal growth and luminescent properties of LiNa5Mo9O30. Journal of Crystal Growth, 2019, 519, 35-40.	1.5	6
27	Mechanisms of luminescence decay in YAG-Ce,Mg fibers excited by \hat{I}^3 - and X-rays. Optical Materials, 2019, 92, 341-346.	3.6	19
28	Luminescence Properties of Undoped Langasite Crystals. Physics of the Solid State, 2019, 61, 307-314.	0.6	2
29	Time-resolved luminescence Z-scan of CsI using power femtosecond laser pulses. Radiation Measurements, 2019, 124, 1-8.	1.4	6
30	Excitation density effects in luminescence properties of CaMoO4 and ZnMoO4. Optical Materials, 2019, 90, 7-13.	3.6	12
31	Influence of annealing conditions on the structure and luminescence properties of KGd _{1â°'x} Eu _x (MoO ₄) ₂ (0 ≠ <i>x</i> ≠1). CrystEngComr 2019, 21, 6460-6471.	n 2. 6	7
32	Ca8MgSm1–(PO4)7:xEu3+, promising red phosphors for WLED application. Journal of Alloys and Compounds, 2019, 776, 897-903.	5.5	45
33	Scintillation yield of hot intraband luminescence. Journal of Luminescence, 2018, 198, 260-271.	3.1	31
34	Luminescence properties of solid solutions LuxY1-xPO4:Eu3+. Optical Materials, 2018, 75, 607-611.	3.6	13
35	Nonlinear behavior of structural and luminescent properties in Gd(NbxTa1-x)O4 mixed crystals. Optical Materials, 2018, 76, 382-387.	3.6	16
36	SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation. Optical Materials, 2018, 75, 448-452.	3.6	13

#	Article	IF	CITATIONS
37	Composition effect in luminescence properties of Y(NbxTa1-x)O4 mixed crystals. Optical Materials, 2018, 80, 247-252.	3.6	11
38	Incommensurately Modulated Structures and Luminescence Properties of the Ag _{<i>x</i>} Sm _{(2–<i>x</i>)/3} WO ₄ (<i>x</i> = 0.286, 0.2) Scheelites as Thermographic Phosphors. Chemistry of Materials, 2018, 30, 4788-4798.	6.7	15
39	Cathodoluminescent UV-radiation sources. , 2018, , .		5
40	Influence of growth atmosphere on Ca3TaGa3Si2O14single crystals optical properties. IOP Conference Series: Materials Science and Engineering, 2017, 169, 012018.	0.6	2
41	Novel laser crystals in Ca9Y(VO4)7-x(PO4)x mixed system. Journal of Alloys and Compounds, 2017, 708, 285-293.	5. 5	12
42	Excitation energy transfer to luminescence centers in MIIMoO4 (MII=Ca, Sr, Zn, Pb) and Li2MoO4. Journal of Luminescence, 2017, 186, 229-237.	3.1	35
43	Optical properties, defects, and composition of La3Ga5.5Ta0.5O14 crystals. Inorganic Materials, 2017, 53, 502-509.	0.8	6
44	Fast ultradense GdTa1-xNbxO4 scintillator crystals. Optical Materials, 2017, 66, 332-337.	3 . 6	17
45	Mixed vanadates: Optimization of optical properties by varying chemical composition. Journal of Luminescence, 2017, 189, 140-147.	3.1	7
46	Luminescent, optical and electronic properties of Na2Mo2O7 single crystals. Journal of Luminescence, 2017, 192, 1264-1272.	3.1	23
47	Study of the optical absorption and photoluminescence in (Pb,Gd)3(Al,Ga)5O12: Ce epitaxial films grown from Pb-containing melt solutions. Quantum Electronics, 2017, 47, 922-926.	1.0	2
48	Crystal field splitting of 5d states and luminescence mechanism in SrAl2O4:Eu2+ phosphor. Journal of Luminescence, 2017, 182, 79-86.	3.1	51
49	Synthesis and luminescence properties of BaHfO3: Pr ceramics. Journal of Luminescence, 2017, 189, 148-152.	3.1	17
50	Luminescent, optical and electronic properties of La 3 Ta 0.5 Ga 5.5 O 14 single crystals grown in different atmospheres. Journal of Luminescence, 2016, 177, 152-159.	3.1	10
51	Influence of peculiarities of electronic excitation relaxation on luminescent properties of MgWO4. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 121, 45-51.	0.6	5
52	Study of the defects in La3Ta0.5Ga5.5O14 single crystals. Journal of Luminescence, 2016, 180, 95-102.	3.1	14
53	Optical and luminescent VUV spectroscopy using synchrotron radiation. Crystallography Reports, 2016, 61, 886-896.	0.6	4
54	Time-resolved luminescence spectroscopy of structurally disordered K3WO3F3 crystals. Optical Materials, 2016, 58, 285-289.	3 . 6	8

#	Article	IF	CITATIONS
55	Luminescent and structural properties of ZnxMg1-xWO4 mixed crystals. Radiation Measurements, 2016, 90, 43-46.	1.4	6
56	Emission centers in ZnMoO4: Influence of growth conditions and decay characteristics. Optical Materials, 2016, 59, 66-69.	3.6	14
57	Luminescent properties of LuAG:Yb and YAG:Yb single crystalline films grown by Liquid Phase Epitaxy method. Radiation Measurements, 2016, 90, 132-135.	1.4	0
58	Bandgap engineering of the Lu Y1â^'PO4 mixed crystals. Journal of Luminescence, 2016, 171, 33-39.	3.1	21
59	Cation influence on exciton localization in homologue scheelites. Journal of Physics Condensed Matter, 2015, 27, 385501.	1.8	8
60	Luminescent properties of Pb2MoO5 single crystals. Optical Materials, 2015, 42, 430-434.	3.6	10
61	Low temperature luminescence and charge carrier trapping in a cryogenic scintillator Li2MoO4. Journal of Luminescence, 2015, 166, 195-202.	3.1	35
62	Electron Spin Resonance study of charge trapping in \hat{l} ±-ZnMoO4 single crystal scintillator. Optical Materials, 2015, 47, 244-250.	3.6	24
63	Optical, luminescent and laser properties of highly transparent ytterbium doped yttrium lanthanum oxide ceramics. Optical Materials, 2015, 50, 15-20.	3.6	16
64	A novel red Ca8.5Pb0.5Eu(PO4)7 phosphor for light emitting diodes application. Journal of Alloys and Compounds, 2015, 647, 965-972.	5.5	38
65	Effect of Al and Ce ion concentrations on the optical absorption and luminescence in Gd3(Al,Ga)5012:Ce3+ epitaxial films. Inorganic Materials, 2015, 51, 1008-1016.	0.8	4
66	Luminescence properties of solid solutions of borates doped with rare-earth ions. Physics of the Solid State, 2014, 56, 2247-2258.	0.6	11
67	Electronic properties of undoped LiBaAlF_6 single crystals: far-ultraviolet optical, luminescence, and x-ray photoelectron spectroscopy studies. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1926.	2.1	7
68	Energy transfer in solid solutions ZnxMg1â^xwO4. Optical Materials, 2014, 36, 1660-1664.	3.6	28
69	The features of energy transfer to the emission centers in ZnWO4 and ZnWO4:Mo. Journal of Luminescence, 2013, 144, 105-111.	3.1	24
70	Phonon-assisted optical bands of nanosized powdery SrAl2O4:Eu2+ crystals: Evidence of a multimode Pekarian. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3170-3178.	2.1	17
71	Trap centers in molybdates. Optical Materials, 2013, 35, 2465-2472.	3.6	60
72	Optical spectroscopy of Ce3+ ions in Gd3(AlxGa1â^'x)5O12 epitaxial films. Materials Research Bulletin, 2013, 48, 4687-4692.	5.2	4

#	Article	IF	CITATIONS
73	Luminescence of borates with yttrium and lutetium cations. Physics of the Solid State, 2013, 55, 150-159.	0.6	12
74	Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations. Journal of Alloys and Compounds, 2013, 573, 6-10.	5.5	50
75	Luminescence and energy transfer mechanisms in CaWO4 single crystals. Journal of Luminescence, 2012, 132, 2753-2762.	3.1	39
76	Low temperature luminescence of ZnMoO4 single crystals grown by low temperature gradient Czochralski technique. Optical Materials, 2012, 34, 1804-1810.	3.6	42
77	Luminescence of PbWO4 single crystals doped with fluorine. Journal of Applied Spectroscopy, 2012, 79, 211-218.	0.7	6
78	Numerical simulation of energy relaxation processes in a ZnMoO4 single crystal. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 112, 72-78.	0.6	9
79	Electronic structure and luminescence mechanisms in ZnMoO ₄ crystals. Journal of Physics Condensed Matter, 2011, 23, 365501.	1.8	45
80	Luminescence and ESR characteristics of \hat{I}^3 -irradiated Lu3Al5O12:Ce single crystalline film scintillators. Radiation Measurements, 2010, 45, 419-421.	1.4	12
81	Luminescence study of the LuBO3 and LuPO4 doped with RE3+. Radiation Measurements, 2010, 45, 307-310.	1.4	28
82	Luminescence of singlet self-trapped excitons in MgF ₂ . Journal of Physics Condensed Matter, 2009, 21, 375501.	1.8	3
83	Luminescence investigation of zinc molybdate single crystals. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1579-1583.	1.8	49
84	Effect of Gd2O3 concentration in Bi-containing high-temperature solutions on the luminescence of epitaxial Gd3Ga5O12 films. Inorganic Materials, 2009, 45, 418-422.	0.8	6
85	Luminescence peculiarities and optical properties of MgMoO4 and MgMoO4:Yb crystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2009, 106, 556-563.	0.6	32
86	Luminescence spectroscopy of excitons and antisite defects in Lu3Al5O12 single crystals and single-crystal films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 104, 75-87.	0.6	25
87	Optical and luminescence properties of CdWO4 and CdWO4:Mo single crystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 104, 366-373.	0.6	34
88	Intrinsic and $fm Ce^{3+}$ -Related Luminescence in Single Crystalline Films and Single Crystals of LuAP and LuAP:Ce Perovskites. IEEE Transactions on Nuclear Science, 2008, 55, 1192-1196.	2.0	17
89	Single crystalline film scintillators based on Ce- and Pr-doped aluminium garnets. Radiation Measurements, 2007, 42, 521-527.	1.4	92
90	Temperature dependence of the PbWO4:F,Eu luminescence. Radiation Measurements, 2007, 42, 887-890.	1.4	4

#	Article	IF	Citations
91	Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets. Physica Status Solidi (B): Basic Research, 2007, 244, 2180-2189.	1.5	149
92	Spectral and luminescence properties of gadolinium gallium garnet epitaxial films doped with terbium. Physics of the Solid State, 2007, 49, 478-483.	0.6	3
93	Peculiarities of luminescence and scintillation properties of YAP:Ce and LuAP:Ce single crystals and single crystalline films. Radiation Measurements, 2007, 42, 528-532.	1.4	55
94	Energy transfer to ions in single crystalline films. Radiation Measurements, 2007, 42, 648-651.	1.4	50
95	Exciton creation in LuAlO3 single crystalline film. Physica Status Solidi (B): Basic Research, 2006, 243, R60-R62.	1.5	14
96	Luminescence of gadolinium garnet single crystals excited by synchrotron radiation. Technical Physics Letters, 2006, 32, 194-196.	0.7	4
97	Terbium-doped garnet single crystals as X-ray-sensitive phosphors. Technical Physics Letters, 2006, 32, 958-959.	0.7	O
98	Luminescence of gadolinium gallium garnet epitaxial films under excitation by synchrotron radiation. Physics of the Solid State, 2006, 48, 2097-2099.	0.6	0
99	Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues. Journal of Luminescence, 2005, 114, 85-94.	3.1	172
100	Energy transfer in pure and Ce-doped LiCaAlF6 and LiSrAlF6 crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 266-270.	1.6	16
101	VUV spectroscopy of pure LiCaAlF6 crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 291-294.	1.6	25
102	Luminescence of excitons and antisite defects in Lu3Al5O12:Ce single crystals and single-crystal films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 99, 923-931.	0.6	28
103	Optical and luminescent properties of a series of molybdate single crystals of scheelite crystal structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 65-68.	0.8	63
104	Exciton-related luminescence in LuAG:Ce single crystals and single crystalline films. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1113-1119.	1.8	44
105	Luminescence of excitons in single-crystal garnets. Optics and Spectroscopy (English Translation of) Tj ETQq1	1 0.784314	4 rgBT /Overlo
106	Luminescence of excitons and antisite defects in the phosphors based on garnet compounds. Radiation Measurements, 2004, 38, 677-680.	1.4	56
107	Optical and luminescent properties of the lead and barium molybdates. Radiation Measurements, 2004, 38, 607-610.	1.4	94
108	Title is missing!. Glass Physics and Chemistry, 2003, 29, 232-236.	0.7	7

#	Article	IF	CITATIONS
109	Charge transfer fluorescence and f–f luminescence in ytterbium compounds. Optical Materials, 2003, 24, 267-274.	3.6	61
110	POLARIZATION PROPERTIES OF SYNCHROTRON RADIATION IN THE STUDY OF ANISOTROPIC INSULATING CRYSTALS. Surface Review and Letters, 2002, 09, 469-472.	1.1	0
111	Fast luminescence of HfO2–Yb2O3 and ZrO2–Yb2O3 solid solutions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 234-238.	1.6	19
112	Charge-transfer luminescence and spectroscopic properties of Yb3+ in aluminium and gallium garnets. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 278-282.	1.6	39
113	Luminescence of fluorohafnate glasses. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 288-291.	1.6	2
114	Study of optical and luminescent properties of some inorganic scintillators in the fundamental absorption region. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 367-373.	1.6	13
115	Optical and luminescent properties of anisotropic tungstate crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 496-503.	1.6	98
116	Spectroscopic Features of Silica Glasses Doped with Tin. Glass Physics and Chemistry, 2002, 28, 379-388.	0.7	8
117	Optical and luminescence properties of complex lead oxides. IEEE Transactions on Nuclear Science, 2001, 48, 2324-2329.	2.0	8
118	VUV-spectroscopy of anisotropic crystals using polarized synchrotron radiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1423-1425.	1.6	6
119	Anisotropy of optical properties of scheelite tungstates in the fundamental absorption region. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 470, 270-273.	1.6	20
120	Optical properties and luminescence centres of lead tungstate, sulphate and carbonate. Radiation Effects and Defects in Solids, 2001, 154, 307-311.	1.2	6
121	Luminescence Properties of the Yttrium and Gadolinium Tantalo-Niobates. Solid State Phenomena, 0, 230, 172-177.	0.3	23