Naoyuki Inagaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671676/publications.pdf

Version: 2024-02-01

99 papers 7,830 citations

43 h-index 54797 84 g-index

103 all docs

 $\begin{array}{c} 103 \\ \\ \text{docs citations} \end{array}$

103 times ranked 7120 citing authors

#	Article	IF	CITATIONS
1	Mechanical regulation of synapse formation and plasticity. Seminars in Cell and Developmental Biology, 2023, 140, 82-89.	2.3	9
2	Shootin1a-mediated actin-adhesion coupling generates force to trigger structural plasticity of dendritic spines. Cell Reports, 2021, 35, 109130.	2.9	12
3	Mechanosensitive axon outgrowth mediated by L1-laminin clutch interface. Biophysical Journal, 2021, 120, 3566-3576.	0.2	12
4	Analyses of Actin Dynamics, Clutch Coupling and Traction Force for Growth Cone Advance. Journal of Visualized Experiments, 2021, , .	0.2	4
5	Simultaneous analyses of clutch coupling and actin polymerization in dendritic spines of rodent hippocampal neurons during chemical LTP. STAR Protocols, 2021, 2, 100904.	0.5	1
6	Forces to Drive Neuronal Migration Steps. Frontiers in Cell and Developmental Biology, 2020, 8, 863.	1.8	18
7	Bayesian Cell Force Estimation Introducing Cell Shape Prior. Biophysical Journal, 2020, 118, 459a.	0.2	0
8	An Artificial Amphiphilic Peptide Promotes Endocytic Uptake by Inducing Membrane Curvature. Bioconjugate Chemistry, 2020, 31, 1611-1615.	1.8	9
9	Shootins mediate collective cell migration and organogenesis of the zebrafish posterior lateral line system. Scientific Reports, 2019, 9, 12156.	1.6	6
10	An influenza-derived membrane tension-modulating peptide regulates cell movement and morphology via actin remodeling. Communications Biology, 2019, 2, 243.	2.0	10
11	Rab33a and Rab33ba mediate the outgrowth of forebrain commissural axons in the zebrafish brain. Scientific Reports, 2019, 9, 1799.	1.6	10
12	Grip and slip of L1-CAM on adhesive substrates direct growth cone haptotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2764-2769.	3.3	34
13	Shootin1b Mediates a Mechanical Clutch to Produce Force for Neuronal Migration. Cell Reports, 2018, 25, 624-639.e6.	2.9	36
14	Gradient-reading and mechano-effector machinery for netrin-1-induced axon guidance. ELife, 2018, 7, .	2.8	32
15	Actin Waves: Origin of Cell Polarization and Migration?. Trends in Cell Biology, 2017, 27, 515-526.	3.6	112
16	Identification of a shootin1 isoform expressed in peripheral tissues. Cell and Tissue Research, 2016, 366, 75-87.	1.5	15
17	Efficient Solid-phase Gene Delivery Mediated by Cerasome: Effect of Reverse Procedure on Transfection Performances in Comparison with Solution-based Method. Chemistry Letters, 2015, 44, 1643-1645.	0.7	0
18	Actin Migration Driven by Directional Assembly and Disassembly of Membrane-Anchored Actin Filaments. Cell Reports, 2015, 12, 648-660.	2.9	68

#	Article	IF	Citations
19	Shootin1–cortactin interaction mediates signal–force transduction for axon outgrowth. Journal of Cell Biology, 2015, 210, 663-676.	2.3	61
20	Bayesian Cell Force Estimation Considering Force Directions. Neural Processing Letters, 2015, 41, 191-200.	2.0	0
21	Large gel proteomics-based analyses of the mechanisms for neuronal axon formation and guidance. Seibutsu Butsuri Kagaku, 2014, 58, 49-52.	0.1	0
22	Conversion of a Signal into Forces for Axon Outgrowth through Pak1-Mediated Shootin1 Phosphorylation. Current Biology, 2013, 23, 529-534.	1.8	89
23	Ceramic Coating of Liposomal Gene Carrier for Minimizing Toxicity to Primary Hippocampal Neurons. Chemistry Letters, 2013, 42, 1265-1267.	0.7	7
24	Rab33a Mediates Anterograde Vesicular Transport for Membrane Exocytosis and Axon Outgrowth. Journal of Neuroscience, 2012, 32, 12712-12725.	1.7	50
25	Proteomics-based analyses of the mechanisms for neuronal symmetry breaking. Seibutsu Butsuri Kagaku, 2012, 56, 31-34.	0.1	0
26	An Estimation of Cell Forces with Hierarchical Bayes Approach Considering Cell Morphology. Lecture Notes in Computer Science, 2012, , 501-508.	1.0	0
27	Functional analysis of shootin2 in the formation and extension of the leading process of cultured inhibitory neurons derived from the ganglionic eminence. Neuroscience Research, 2011, 71, e232.	1.0	0
28	Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. Planta, 2011, 233, 947-960.	1.6	25
29	Systems biology of symmetry breaking during neuronal polarity formation. Developmental Neurobiology, 2011, 71, 584-593.	1.5	40
30	Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain. EMBO Journal, 2011, 30, 2734-2747.	3.5	75
31	Proteomics analysis of the temporal changes in axonal proteins during maturation. Developmental Neurobiology, 2010, 70, 523-537.	1.5	47
32	A diffusionâ€based neurite lengthâ€sensing mechanism involved in neuronal symmetry breaking. Molecular Systems Biology, 2010, 6, 394.	3.2	73
33	Multimodal feedback control for neuronal morphological polarization. Neuroscience Research, 2010, 68, e363.	1.0	0
34	Shootin2: A candidate for a clutch molecule involved in the migration of ganglionic eminence-derived inhibitory neurons. Neuroscience Research, 2010, 68, e360.	1.0	0
35	Shootin1 interacts with actin retrograde flow and L1-CAM to promote axon outgrowth. Neuroscience Research, 2009, 65, S45.	1.0	O
36	Shootin1 interacts with actin retrograde flow and L1-CAM to promote axon outgrowth. Journal of Cell Biology, 2008, 181, 817-829.	2.3	115

3

#	Article	IF	Citations
37	Singar1, a Novel RUN Domain-containing Protein, Suppresses Formation of Surplus Axons for Neuronal Polarity. Journal of Biological Chemistry, 2007, 282, 19884-19893.	1.6	60
38	Preferential Localization of Rat GAPDS on the Ribs of Fibrous Sheath of Sperm Flagellum and Its Expression during Flagellar Formation. Acta Histochemica Et Cytochemica, 2007, 40, 19-26.	0.8	16
39	Proteomic identification of a novel isoform of collapsin response mediator protein-2 in spinal nerves peripheral to dorsal root ganglia. Proteomics, 2006, 6, 6085-6094.	1.3	41
40	Vimentin-Ser82 as a memory phosphorylation site in astrocytes. Genes To Cells, 2006, 11, 531-540.	0.5	14
41	Shootin1: a protein involved in the organization of an asymmetric signal for neuronal polarization. Journal of Cell Biology, 2006, 175, 147-157.	2.3	135
42	Acid-labile surfactant improves in-sodium dodecyl sulfate polyacrylamide gel protein digestion for matrix-assisted laser desorption/ionization mass spectrometric peptide mapping. Journal of Mass Spectrometry, 2004, 39, 202-207.	0.7	45
43	Large Gel Two-Dimensional Electrophoresis: Improving Recovery of Cellular Proteome. Current Proteomics, 2004, 1, 35-39.	0.1	19
44	Collapsin response mediator protein-2 accelerates axon regeneration of nerve-injured motor neurons of rat. Journal of Neurochemistry, 2003, 86, 1042-1050.	2.1	76
45	Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis. Proteomics, 2002, 2, 666-672.	1.3	35
46	CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biology, 2002, 4, 583-591.	4.6	687
47	Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C signalling pathways. EMBO Journal, 2001, 20, 1640-1650.	3.5	91
48	CRMP-2 induces axons in cultured hippocampal neurons. Nature Neuroscience, 2001, 4, 781-782.	7.1	506
49	Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. Journal of Cell Biology, 2001, 155, 809-820.	2.3	101
50	Activation of Ca2+/calmodulin-dependent Protein Kinase II within Post-synaptic Dendritic Spines of Cultured Hippocampal Neurons. Journal of Biological Chemistry, 2000, 275, 27165-71.	1.6	15
51	Phosphorylation of Collapsin Response Mediator Protein-2 by Rho-kinase. Journal of Biological Chemistry, 2000, 275, 23973-23980.	1.6	296
52	Activation of Ca2+/Calmodulin-dependent Protein Kinase II within Post-synaptic Dendritic Spines of Cultured Hippocampal Neurons. Journal of Biological Chemistry, 2000, 275, 27165-27171.	1.6	29
53	Phospholipase C-Î ³ and Phosphoinositide 3-Kinase Mediate Cytoplasmic Signaling in Nerve Growth Cone Guidance. Neuron, 1999, 23, 139-148.	3.8	264
54	Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin., 1998, 23, 191-199.		102

#	Article	IF	Citations
55	Roles of Rho-associated Kinase in Cytokinesis; Mutations in Rho-associated Kinase Phosphorylation Sites Impair Cytokinetic Segregation of Glial Filaments. Journal of Cell Biology, 1998, 143, 1249-1258.	2.3	159
56	Phosphorylation-Dependent Control of Structures of Intermediate Filaments: A Novel Approach Using Site- and Phosphorylation State-Specific Antibodies. Journal of Biochemistry, 1997, 121, 407-414.	0.9	54
57	Spatial Patterns of Ca2+ Signals Define Intracellular Distribution of a Signaling by Ca2+/Calmodulin-dependent Protein Kinase II. Journal of Biological Chemistry, 1997, 272, 25195-25199.	1.6	41
58	Interaction of Smooth Muscle Myosin Phosphatase with Phospholipids. Biochemistry, 1997, 36, 7607-7614.	1.2	64
59	Myosin Binding Subunit of Smooth Muscle Myosin Phosphatase at the Cell-Cell Adhesion Sites in MDCK Cells. Biochemical and Biophysical Research Communications, 1997, 230, 552-556.	1.0	29
60	Domain-Specific Phosphorylation of Vimentin and Glial Fibrillary Acidic Protein by PKN. Biochemical and Biophysical Research Communications, 1997, 234, 621-625.	1.0	62
61	Biochemical and Cellular Effects of Roscovitine, a Potent and Selective Inhibitor of the Cyclin-Dependent Kinases cdc2, cdk2 and cdk5. FEBS Journal, 1997, 243, 527-536.	0.2	1,215
62	Visualization and regulation of intermediate filament kinase activities. Seminars in Cell and Developmental Biology, 1996, 7, 741-749.	2.3	6
63	Primary Structure of Light and Heavy Chain Variable Regions of Antibodies Recognizing Phosphorylated Vimentins. Biochemical and Biophysical Research Communications, 1996, 219, 633-637.	1.0	1
64	Visualization of protein kinase activities in single cells by antibodies against phosphorylated vimentin and GFAP. Neurochemical Research, 1996, 21, 795-800.	1.6	22
65	Dynamic property of intermediate filaments: Regulation by phosphorylation. BioEssays, 1996, 18, 481-487.	1.2	178
66	Detection of protein kinase activity specifically activated at metaphase-anaphase transition Journal of Cell Biology, 1996, 132, 635-641.	2.3	45
67	TrkA Tyrosine Residues Involved in NGF-induced Neurite Outgrowth of PC12 Cells. European Journal of Neuroscience, 1995, 7, 1125-1133.	1.2	45
68	Differential targeting of protein kinase C and CaM kinase II signalings to vimentin Journal of Cell Biology, 1995, 131, 1055-1066.	2.3	73
69	Characterization of TrkB Receptorâ€Mediated Signaling Pathways in Rat Cerebellar Granule Neurons: Involvement of Protein Kinase C in Neuronal Survival. Journal of Neurochemistry, 1995, 65, 2241-2250.	2.1	131
70	Histamine and prostanoid receptors on glial cells. Glia, 1994, 11, 102-109.	2.5	57
71	Spatiotemporal distribution of protein kinase and phosphatase activities. Trends in Biochemical Sciences, 1994, 19, 448-452.	3.7	94
72	Formation of inositol phosphates mediated by M3 muscarinic receptors in type-1 and type-2 astrocytes from neonatal rat cerebral cortex. Neuroscience Letters, 1994, 180, 131-134.	1.0	12

#	Article	IF	Citations
73	Glial Fibrillary Acidic Protein: Dynamic Property and Regulation by Phosphorylation. Brain Pathology, 1994, 4, 239-243.	2.1	137
74	Histamine-containing nerve fibers innervate human cerebellum. Neuroscience Letters, 1993, 160, 53-56.	1.0	39
75	BDNF and NT-3 induce intracellular Ca2+ elevation in hippocampal neurones. NeuroReport, 1993, 4, 1303-1306.	0.6	196
76	Structure of Monoaminergic Neuron Systems in the Brain. Journal of Nutritional Science and Vitaminology, 1992, 38, 569-572.	0.2	0
77	Circadian rhythm of histamine release from the hypothalamus of freely moving rats. Physiology and Behavior, 1992, 51, 391-394.	1.0	159
78	Regional distribution of histamine in the brain of non-mammalian vertebrates. Brain Research, 1992, 571, 129-132.	1.1	10
79	Type-1 and type-2 astrocytes are distinct targets for prostaglandins D2, E2, and F2?. Glia, 1992, 6, 67-74.	2.5	35
80	Is the histaminergic neuron system a regulatory center for whole-brain activity?. Trends in Neurosciences, 1991, 14, 415-418.	4.2	353
81	Type-2 astrocytes show intracellular Ca2+ elevation in response to various neuroactive substances. Neuroscience Letters, 1991, 128, 257-260.	1.0	47
82	Histaminergic neuron system in the brain: Distribution and possible functions. Brain Research Bulletin, 1991, 27, 367-370.	1.4	85
83	Histamine-induced inositol phosphate accumulation in type-2 astrocytes. Biochemical and Biophysical Research Communications, 1991, 177, 734-738.	1.0	20
84	Histamine-induced cyclic AMP accumulation in type-1 and type-2 astrocytes in primary culture. European Journal of Pharmacology, 1991, 208, 249-253.	2.7	16
85	In vivo release of neuronal histamine in the hypothalamus of rats measured by microdialysis. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 343, 190-195.	1.4	133
86	Organization of the histaminergic system in the brain of the teleost, Trachurus trachurus. Journal of Comparative Neurology, 1991, 310, 94-102.	0.9	37
87	Single type-2 astrocytes show multiple independent sites of Ca2+ signaling in response to histamine Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4215-4219.	3.3	61
88	Histamine H1-Receptors on Astrocytes in Primary Cultures: A Possible Target for Histaminergic Neurones., 1991, 33, 161-180.		15
89	An analysis of histaminergic efferents of the tuberomammillary nucleus to the medial preoptic area and inferior colliculus of the rat. Experimental Brain Research, 1990, 80, 374-80.	0.7	113
90	Organization of the histaminergic system in the brain of the turtleChinemys reevesii. Journal of Comparative Neurology, 1990, 297, 132-144.	0.9	30

#	Article	IF	CITATIONS
91	Characterization of histamine H1-receptors on astrocytes in primary culture: [3H]mepyramine binding studies. European Journal of Pharmacology, 1989, 173, 43-51.	1.7	48
92	Organization of histaminergic fibers in the rat brain. Journal of Comparative Neurology, 1988, 273, 283-300.	0.9	363
93	Histaminergic nerve fibers in the median eminence and hypophysis of rats demonstrated immunocytochemically with antibodies against histidine decarboxylase and histamine. Brain Research, 1988, 439, 402-405.	1.1	27
94	The histaminergic innervation of the mesencephalic nucleus of the trigeminal nerve in rat brain: a light and electron microscopical study. Brain Research, 1987, 418, 388-391.	1.1	67
95	Immunocytochemical localizations of cytosolic and mitochondrial glutamic oxaloacetic transaminase isozymes in rat primary sensory neurons as a marker for the glutamate neuronal system. Brain Research, 1987, 402, 197-200.	1.1	24
96	Neuromodulators in the retina: An immunohistochemical analysis. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1987, 6, S205-S225.	0.0	1
97	Immunocytochemical localizations of cytosolic and mitochondrial glutamic oxaloacetic transaminase isozymes in rat retina as markers for the glutamate-aspartate neuronal system. Brain Research, 1985, 325, 336-339.	1.1	23
98	CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. , 0, .		1
99	Quantitative Modeling of Neuronal Polarization. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 354-361.	0.2	0