
## Masaru Kanekiyo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/367131/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 2013, 499, 102-106.                                                                                                          | 27.8 | 682       |
| 2  | Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nature Medicine, 2015, 21, 1065-1070.                                                                                                              | 30.7 | 567       |
| 3  | Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody.<br>Science, 2016, 351, 1339-1342.                                                                                                | 12.6 | 370       |
| 4  | Prefusion F–specific antibodies determine the magnitude of RSV neutralizing activity in human sera.<br>Science Translational Medicine, 2015, 7, 309ra162.                                                                         | 12.4 | 312       |
| 5  | Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell, 2015, 162, 1090-1100.                                                                                                                 | 28.9 | 278       |
| 6  | Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell, 2016, 166, 609-623.                                                                                                                     | 28.9 | 270       |
| 7  | Evaluation of candidate vaccine approaches for MERS-CoV. Nature Communications, 2015, 6, 7712.                                                                                                                                    | 12.8 | 258       |
| 8  | A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nature Medicine, 2018, 24, 408-416.                                                                              | 30.7 | 235       |
| 9  | Flow Cytometry Reveals that H5N1 Vaccination Elicits Cross-Reactive Stem-Directed Antibodies from<br>Multiple Ig Heavy-Chain Lineages. Journal of Virology, 2014, 88, 4047-4057.                                                  | 3.4  | 220       |
| 10 | High-Throughput Mapping of B Cell Receptor Sequences to Antigen Specificity. Cell, 2019, 179, 1636-1646.e15.                                                                                                                      | 28.9 | 219       |
| 11 | Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses.<br>Nature Immunology, 2019, 20, 362-372.                                                                                    | 14.5 | 211       |
| 12 | Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 2021, 592, 623-628.                                                                                                                                 | 27.8 | 180       |
| 13 | Structural and molecular basis for Ebola virus neutralization by protective human antibodies.<br>Science, 2016, 351, 1343-1346.                                                                                                   | 12.6 | 176       |
| 14 | Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle<br>East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Journal of<br>Virology, 2018, 92, . | 3.4  | 155       |
| 15 | Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .                                                                                                  | 6.0  | 123       |
| 16 | Activation Dynamics and Immunoglobulin Evolution of Pre-existing and Newly Generated Human<br>Memory B cell Responses to Influenza Hemagglutinin. Immunity, 2019, 51, 398-410.e5.                                                 | 14.3 | 107       |
| 17 | Immunization with Components of the Viral Fusion Apparatus Elicits Antibodies That Neutralize Epstein-Barr Virus in B Cells and Epithelial Cells. Immunity, 2019, 50, 1305-1316.e6.                                               | 14.3 | 107       |
| 18 | Pre-fusion F is absent on the surface of formalin-inactivated respiratory syncytial virus. Scientific Reports, 2016, 6, 34108.                                                                                                    | 3.3  | 106       |

Masaru Kanekiyo

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate<br>Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. MBio, 2019, 10, .                                                                  | 4.1  | 88        |
| 20 | Preferential induction of cross-group influenza A hemagglutinin stem–specific memory B cells after<br>H7N9 immunization in humans. Science Immunology, 2017, 2, .                                                                                                | 11.9 | 84        |
| 21 | H5N1 Vaccine–Elicited Memory B Cells Are Genetically Constrained by the IGHV Locus in the<br>Recognition of a Neutralizing Epitope in the Hemagglutinin Stem. Journal of Immunology, 2015, 195,<br>602-610.                                                      | 0.8  | 83        |
| 22 | Germline-Encoded Affinity for Cognate Antigen Enables Vaccine Amplification of a Human Broadly<br>Neutralizing Response against Influenza Virus. Immunity, 2019, 51, 735-749.e8.                                                                                 | 14.3 | 71        |
| 23 | Two-Component Ferritin Nanoparticles for Multimerization of Diverse Trimeric Antigens. ACS<br>Infectious Diseases, 2018, 4, 788-796.                                                                                                                             | 3.8  | 65        |
| 24 | Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1<br>trial. Nature Medicine, 2022, 28, 383-391.                                                                                                             | 30.7 | 65        |
| 25 | Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. JCI Insight, 2020, 5, .                                                                                                                    | 5.0  | 64        |
| 26 | Priming-Boosting Vaccination with Recombinant Mycobacterium bovis Bacillus Calmette-Guel̀rin and a<br>Nonreplicating Vaccinia Virus Recombinant Leads to Long-Lasting and Effective Immunity. Journal of<br>Virology, 2005, 79, 12871-12879.                     | 3.4  | 60        |
| 27 | Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nature Communications, 2017, 8, 14158.                                                                                                            | 12.8 | 58        |
| 28 | Structural basis of respiratory syncytial virus subtype-dependent neutralization by an antibody targeting the fusion glycoprotein. Nature Communications, 2017, 8, 1877.                                                                                         | 12.8 | 53        |
| 29 | New Vaccine Design and Delivery Technologies. Journal of Infectious Diseases, 2019, 219, S88-S96.                                                                                                                                                                | 4.0  | 53        |
| 30 | In vitro reconstitution of B cell receptor–antigen interactions to evaluate potential vaccine candidates. Nature Protocols, 2016, 11, 193-213.                                                                                                                   | 12.0 | 51        |
| 31 | Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Science Translational Medicine, 2021, 13, .                                                                                                             | 12.4 | 49        |
| 32 | A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nature Communications, 2021, 12, 1722.                                                                                                             | 12.8 | 41        |
| 33 | Mycobacterial Codon Optimization Enhances Antigen Expression and Virus-Specific Immune Responses<br>in Recombinant Mycobacterium bovis Bacille Calmette-Guelrin Expressing Human Immunodeficiency<br>Virus Type 1 Gag. Journal of Virology, 2005, 79, 8716-8723. | 3.4  | 37        |
| 34 | Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nature Communications, 2020, 11, 791.                                                                                             | 12.8 | 36        |
| 35 | Outer Domain of HIV-1 gp120: Antigenic Optimization, Structural Malleability, and Crystal Structure with Antibody VRC-PG04. Journal of Virology, 2013, 87, 2294-2306.                                                                                            | 3.4  | 34        |
| 36 | Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation. Scientific Reports, 2016, 6, 36298.                                                                                                                                   | 3.3  | 29        |

Masaru Kanekiyo

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct<br>Clonotype and Epitope Specificity. Journal of Immunology, 2009, 183, 2425-2434.                                 | 0.8  | 27        |
| 38 | Epitope-Specific Serological Assays for RSV: Conformation Matters. Vaccines, 2019, 7, 23.                                                                                                                           | 4.4  | 26        |
| 39 | Enhanced Induction of Intestinal Cellular Immunity by Oral Priming with Enteric Adenovirus 41<br>Vectors. Journal of Virology, 2009, 83, 748-756.                                                                   | 3.4  | 25        |
| 40 | Delivery of Human Immunodeficiency Virus Vaccine Vectors to the Intestine Induces Enhanced<br>Mucosal Cellular Immunity. Journal of Virology, 2009, 83, 7166-7175.                                                  | 3.4  | 23        |
| 41 | Next-Generation Influenza Vaccines. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038448.                                                                                                                 | 6.2  | 23        |
| 42 | Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nature Communications, 2022, 13, 1825.                                                                                          | 12.8 | 21        |
| 43 | Comparison of adjuvants to optimize influenza neutralizing antibody responses. Vaccine, 2019, 37, 6208-6220.                                                                                                        | 3.8  | 16        |
| 44 | A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nature Medicine, 2022, 28, 373-382.                                                    | 30.7 | 16        |
| 45 | A novel CD4â€conjugated ultraviolet lightâ€activated photocatalyst inactivates HIVâ€1 and SIV efficiently.<br>Journal of Medical Virology, 2008, 80, 1322-1331.                                                     | 5.0  | 14        |
| 46 | An R848-Conjugated Influenza Virus Vaccine Elicits Robust Immunoglobulin G to Hemagglutinin Stem<br>in a Newborn Nonhuman Primate Model. Journal of Infectious Diseases, 2020, 224, 351-359.                        | 4.0  | 14        |
| 47 | Influenza-infected newborn and adult monkeys exhibit a strong primary antibody response to hemagglutinin stem. JCI Insight, 2020, 5, .                                                                              | 5.0  | 13        |
| 48 | A unique nanoparticulate TLR9 agonist enables a HA split vaccine to confer FcÎ <sup>3</sup> R-mediated protection against heterologous lethal influenza virus infection. International Immunology, 2019, 31, 81-90. | 4.0  | 12        |
| 49 | Intradermal Delivery of Recombinant Vaccinia Virus Vector DIs Induces Gutâ€Mucosal Immunity.<br>Scandinavian Journal of Immunology, 2010, 72, 98-105.                                                               | 2.7  | 7         |
| 50 | High-Throughput B Cell Epitope Determination by Next-Generation Sequencing. Frontiers in Immunology, 2022, 13, 855772.                                                                                              | 4.8  | 7         |
| 51 | Mucosal Administration of Completely Nonâ€Replicative Vaccinia Virus Recombinant Dairen I strain<br>Elicits Effective Mucosal and Systemic Immunity. Scandinavian Journal of Immunology, 2008, 68,<br>476-483.      | 2.7  | 3         |
| 52 | Virus-Like Particle and Nanoparticle Vaccines. , 2017, , 87-98.                                                                                                                                                     |      | 3         |
| 53 | Sequence-Signature Optimization Enables Improved Identification of Human HV6-1-Derived Class<br>Antibodies That Neutralize Diverse Influenza A Viruses. Frontiers in Immunology, 2021, 12, 662909.                  | 4.8  | 0         |