Maria Del Grosso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671238/publications.pdf

Version: 2024-02-01

257101 329751 47 1,486 24 citations h-index papers

37 g-index 49 49 49 1848 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The changing epidemiology of carbapenemase-producing <i>Klebsiella pneumoniae</i> i>in Italy: toward polyclonal evolution with emergence of high-risk lineages. Journal of Antimicrobial Chemotherapy, 2021, 76, 355-361.	1.3	43
2	Staphylococcus aureus clones causing osteomyelitis: a literature review (2000–2020). Journal of Global Antimicrobial Resistance, 2021, 26, 29-36.	0.9	23
3	Whole genome sequencing of macrolide resistant Streptococcus pneumoniae serotype 19A sequence type 416. BMC Microbiology, 2020, 20, 224.	1.3	2
4	First detection of autochthonous extensively drug-resistant NDM-1 Pseudomonas aeruginosa ST235 from a patient with bloodstream infection in Italy, October 2019. Antimicrobial Resistance and Infection Control, 2020, 9, 73.	1.5	7
5	Two multi-fragment recombination events resulted in the \hat{I}^2 -lactam-resistant serotype 11A-ST6521 related to Spain9V-ST156 pneumococcal clone spreading in south-western Europe, 2008 to 2016. Eurosurveillance, 2020, 25, .	3.9	12
6	Cross-border spread of blaNDM-1- and blaOXA-48-positive Klebsiella pneumoniae: a European collaborative analysis of whole genome sequencing and epidemiological data, 2014 to 2019. Eurosurveillance, 2020, 25, .	3.9	26
7	Daptomycin Resistant Staphylococcus aureus Clinical Strain With Novel Non-synonymous Mutations in the mprF and vraS Genes: A New Insight Into Daptomycin Resistance. Frontiers in Microbiology, 2018, 9, 2705.	1.5	51
8	Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resistance Updates, 2018, 40, 25-39.	6.5	165
9	Impact of pneumococcal conjugate vaccine (PCV7 and PCV13) on pneumococcal invasive diseases in Italian children and insight into evolution of pneumococcal population structure. Vaccine, 2017, 35, 4587-4593.	1.7	43
10	ICE Spy 009, a Conjugative Genetic Element Carrying mef (E) in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy, 2016, 60, 3906-3912.	1.4	9
11	Application of capsular sequence typing (CST) to serotype non-viable Streptococcus pneumoniae isolates from an old collection. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 2025-2031.	1.3	1
12	Decrease of Vancomycin Resistance in Enterococcus faecium Isolates from Bloodstream Infections in Italy from 2003 to 2013. Antimicrobial Agents and Chemotherapy, 2015, 59, 3690-3691.	1.4	2
13	Invasive pneumococcal disease in children and adults in seven Italian regions after the introduction of the conjugate vaccine, 2008-2014. Epidemiologia E Prevenzione, 2015, 39, 134-8.	1.1	18
14	Tn <i>>5253</i> Family Integrative and Conjugative Elements Carrying <i>mef</i> (I) and <i>catQ</i> Determinants in Streptococcus pneumoniae and Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy, 2014, 58, 5886-5893.	1.4	30
15	Typing of Panton-Valentine leukocidin-encoding phages carried by methicillin-susceptible and methicillin-resistant Staphylococcus aureus from Italy. Clinical Microbiology and Infection, 2014, 20, O840-O846.	2.8	25
16	Increase of pneumococcal serotype 19A in Italy is due to expansion of the piliated clone ST416/CC199. Journal of Medical Microbiology, 2013, 62, 1220-1225.	0.7	34
17	Surveillance of invasive diseases caused by Streptococcus pneumoniae in Italy: evolution of serotypes and antibiotic resistance in different age groups before and after implementation of PCV7. Microbiologia Medica, 2013, 28, .	0.3	0
18	Pneumococcal Carriage in Young Children One Year after Introduction of the 13-Valent Conjugate Vaccine in Italy. PLoS ONE, 2013, 8, e76309.	1.1	40

#	Article	IF	Citations
19	Point mutations in wchA are responsible for the non-typability of two invasive Streptococcus pneumoniae isolates. Microbiology (United Kingdom), 2012, 158, 338-344.	0.7	19
20	Serotype and Clonal Evolution of Penicillin-Nonsusceptible Invasive Streptococcus pneumoniae in the 7-Valent Pneumococcal Conjugate Vaccine Era in Italy. Antimicrobial Agents and Chemotherapy, 2012, 56, 4965-4968.	1.4	24
21	Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniaeinvasive isolate. BMC Microbiology, 2011, 11, 25.	1.3	36
22	Genetic Resistance Elements CarryingmefSubclasses Other thanmef(A) in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy, 2011, 55, 3226-3230.	1.4	23
23	New Composite Genetic Element of the Tn <i>916</i> Family with Dual Macrolide Resistance Genes in a <i>Streptococcus pneumoniae</i> Isolate Belonging to Clonal Complex 271. Antimicrobial Agents and Chemotherapy, 2009, 53, 1293-1294.	1.4	15
24	Characterization of Macrolide Efflux Pump <i>mef</i> Subclasses Detected in Clinical Isolates of <i>Streptococcus pyogenes</i> Isolated between 1999 and 2005. Antimicrobial Agents and Chemotherapy, 2009, 53, 1921-1925.	1.4	14
25	Detection of genetic elements carrying glycopeptide resistance clusters in Enterococcus by DNA microarrays. Molecular and Cellular Probes, 2008, 22, 162-167.	0.9	3
26	New Genetic Element Carrying the Erythromycin Resistance Determinant <i>erm</i> (TR) in <i>Streptococcus pneumoniae</i> Antimicrobial Agents and Chemotherapy, 2008, 52, 619-625.	1.4	25
27	Antibiotic-Resistant Invasive Pneumococcal Clones in Italy. Journal of Clinical Microbiology, 2007, 45, 306-312.	1.8	30
28	The Macrolide Resistance Genes <i>erm</i> (B) and <i>mef</i> (E) Are Carried by Tn <i>2010</i> in Dual-Gene <i>Streptococcus pneumoniae</i> Isolates Belonging to Clonal Complex CC271. Antimicrobial Agents and Chemotherapy, 2007, 51, 4184-4186.	1.4	47
29	Antibiotic-Resistant Invasive Pneumococcal Clones in Italy. Journal of Clinical Microbiology, 2007, 45, 3148-3148.	1.8	0
30	Zinc metalloproteinase genes in clinical isolates of Streptococcus pneumoniae: association of the full array with a clonal cluster comprising serotypes 8 and 11A. Microbiology (United Kingdom), 2006, 152, 313-321.	0.7	36
31	The mef (E)-Carrying Genetic Element (mega) of Streptococcus pneumoniae: Insertion Sites and Association with Other Genetic Elements. Antimicrobial Agents and Chemotherapy, 2006, 50, 3361-3366.	1.4	61
32	Clonal Spread of a Vancomycin-Resistant Enterococcus faecium Strain among Bloodstream-Infecting Isolates in Italy. Journal of Clinical Microbiology, 2005, 43, 1575-1580.	1.8	48
33	Evolution of erythromycin resistance in Streptococcus pneumoniae in Italy. Journal of Antimicrobial Chemotherapy, 2005, 55, 256-259.	1.3	32
34	Tn 2009, a Tn 916-Like Element Containing mef (E) in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2004, 48, 2037-2042.	1.4	77
35	Antimicrobial susceptibility of vancomycin-susceptible and -resistant enterococci isolated in Italy from raw meat products, farm animals, and human infections. International Journal of Food Microbiology, 2004, 97, 17-22.	2.1	47
36	Molecular analysis of Tn1546-like elements mediating high-level vancomycin resistance in Enterococcus gallinarum. Journal of Antimicrobial Chemotherapy, 2003, 52, 881-881.	1.3	0

#	Article	IF	CITATIONS
37	Molecular analysis of Tn1546-like elements mediating high-level vancomycin resistance in Enterococcus gallinarum. Journal of Antimicrobial Chemotherapy, 2003, 52, 772-775.	1.3	14
38	Phenotypic and Genotypic Characterization of Two Penicillin-Susceptible Serotype 6B Streptococcus pneumoniae Clones Circulating in Italy. Journal of Clinical Microbiology, 2003, 41, 2855-2861.	1.8	13
39	Macrolide Efflux Genes mef(A) and mef(E) Are Carried by Different Genetic Elements in Streptococcus pneumoniae. Journal of Clinical Microbiology, 2002, 40, 774-778.	1.8	130
40	Prevalence, Determinants, and Molecular Epidemiology of Streptococcus pneumoniae Isolates Colonizing the Nasopharynx of Healthy Children in Rome. European Journal of Clinical Microbiology and Infectious Diseases, 2002, 21, 181-188.	1.3	36
41	Activity of quinupristin–dalfopristin in invasive isolates of Streptococcus pneumoniae from Italy. Clinical Microbiology and Infection, 2001, 7, 503-506.	2.8	5
42	Prosthetic Biologic Valve Endocarditis Caused by a Vancomycin-Resistant (vanA)Enterococcus faecalis:Case Report. Journal of Chemotherapy, 2000, 12, 416-420.	0.7	7
43	Detection and Characterization of Vancomycin-Resistant Enterococci in Farm Animals and Raw Meat Products in Italy. Microbial Drug Resistance, 2000, 6, 313-318.	0.9	53
44	The Alleles of the <i>bft</i> Gene Are Distributed Differently among Enterotoxigenic <i>Bacteroides fragilis</i> Strains from Human Sources and Can Be Present in Double Copies. Journal of Clinical Microbiology, 2000, 38, 607-612.	1.8	36
45	Decrease of vancomycin-resistant enterococci in poultry meat after avoparcin ban. Lancet, The, 1999, 354, 741-742.	6.3	82
46	Genetic Tests to Reveal Tat Homodimer Formation and Select Tat Homodimer Inhibitor. Biochemical and Biophysical Research Communications, 1994, 201, 701-708.	1.0	19
47	pR plasmid replication provides evidence that single-stranded DNA induces the SOS system in vivo. Molecular Genetics and Genomics, 1993, 238, 333-338.	2.4	23