Osamu Kishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671155/publications.pdf Version: 2024-02-01

Ослми Кіснірл

4

#	ARTICLE	IF	CITATIONS
1	Complex effects of body length and condition on withinâ€tributary movement and emigration in stream salmonids. Ecology of Freshwater Fish, 2022, 31, 317-329.	1.4	4
2	Predators mitigate the destabilising effects of heatwaves on multitrophic stream communities. Global Change Biology, 2022, 28, 403-416.	9.5	18
3	Spatially variable hydrological and biological processes shape diverse postâ€flood aquatic communities. Freshwater Biology, 2022, 67, 549-563.	2.4	4
4	Size-dependent growth tactics of a partially migratory fish before migration. Oecologia, 2022, 198, 371-379.	2.0	2
5	Size-selective mortality occurs in smolts during a seaward migration, but not in river residents, in masu salmon (Oncorhynchus masou). Environmental Biology of Fishes, 2022, 105, 1833-1843.	1.0	4
6	Utilizing environmental DNA for wide-range distributions of reproductive area of an invasive terrestrial toad in Ishikari river basin in Japan. Biological Invasions, 2022, 24, 1199-1211.	2.4	6
7	The Japanese Common Toad, Bufo japonicus formosus, Contains Toxin in the Egg Stage. Current Herpetology, 2021, 40, .	0.5	6
8	Hatch timing of two subarctic salmonids in a stream network estimated by otolith increments. Fisheries Management and Ecology, 2021, 28, 507-515.	2.0	4
9	Are toxic effects of alien species affected by their prey? Evaluation by bioassay with captive-bred toad embryos and a vulnerable predator. Hydrobiologia, 2021, 848, 4445-4452.	2.0	1
10	Native frogs (<scp><i>Rana pirica</i></scp>) do not respond adaptively to alien toads (<scp><i>Bufo) Tj ETQqO</i></scp>	0 0 <u>r</u> gBT /0 1.5	Overlock 10
11	Comparison of susceptibility to a toxic alien toad (Bufo japonicus formosus) between predators in its native and invaded ranges. Freshwater Biology, 2020, 65, 240-252.	2.4	9
12	Prospective interspecies interaction between Siberian and Ezo salamander larvae. Ecological Research, 2020, 35, 533-539.	1.5	3
13	Host phenologies and the life history of horsehair worms (Nematomorpha, Gordiida) in a mountain stream in northern Japan. Ecological Research, 2020, 35, 482-493.	1.5	7
14	Enhanced recruitment of larger predators in the presence of large prey. Journal of Animal Ecology, 2020, 89, 1615-1627.	2.8	3
15	A multistate mark–recapture approach to characterize stream fish movement at multiple spatial scales. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1090-1100.	1.4	8
16	Demography and productivity during the recovery time sequence of a wild edible bamboo after large-scale anthropogenic disturbance. PLoS ONE, 2020, 15, e0243089.	2.5	1
17	Expression of Genes Involved in Offensive and Defensive Phenotype Induction in the Pituitary Gland of the Hokkaido Salamander (Hynobius retardatus). Zoological Science, 2020, 37, 563-574.	0.7	2

¹⁸ Visual preference of males for conspecific mates in mutually ornamented fish: possible support for the species recognition hypothesis. Journal of Ethology, 2019, 37, 353-362.

Osamu Kishida

#	Article	IF	CITATIONS
19	Longâ€ŧerm fauna and flora records of the experimental forests of the Forest Research Station of Hokkaido University, Japan. Ecological Research, 2019, 34, 349-349.	1.5	0
20	Foraging traits of native predators determine their vulnerability to a toxic alien prey. Freshwater Biology, 2019, 64, 56-70.	2.4	10
21	Environmental <scp>DNA</scp> enables detection of terrestrial mammals from forest pond water. Molecular Ecology Resources, 2017, 17, e63-e75.	4.8	158
22	Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons. PLoS ONE, 2016, 11, e0165987.	2.5	81
23	Antagonistic indirect interactions between large and small conspecific prey via a heterospecific predator. Oikos, 2016, 125, 271-277.	2.7	12
24	Contacts with large, active individuals intensify the predation risk of small conspecifics. Ecology, 2016, 97, 3206-3218.	3.2	5
25	Giant cannibals drive selection for inducible defence in heterospecific prey. Biological Journal of the Linnean Society, 2016, , .	1.6	2
26	Transcriptome analysis of predator―and preyâ€induced phenotypic plasticity in the Hokkaido salamander (<i>Hynobius retardatus</i>). Molecular Ecology, 2015, 24, 3064-3076.	3.9	19
27	Response of a Wild Edible Plant to Human Disturbance: Harvesting Can Enhance the Subsequent Yield of Bamboo Shoots. PLoS ONE, 2015, 10, e0146228.	2.5	10
28	Nonadditive impacts of temperature and basal resource availability on predator–prey interactions and phenotypes. Oecologia, 2015, 178, 1215-1225.	2.0	8
29	Gene expression profiles in Rana pirica tadpoles following exposure to a predation threat. BMC Genomics, 2015, 16, 258.	2.8	6
30	Predator cannibalism can intensify negative impacts on heterospecific prey. Ecology, 2015, 96, 1887-1898.	3.2	20
31	Adaptive acceleration in growth and development of salamander hatchlings in cannibalistic situations. Functional Ecology, 2015, 29, 469-478.	3.6	20
32	Feedback between size balance and consumption strongly affects the consequences of hatching phenology in sizeâ€dependent predator–prey interactions. Oikos, 2015, 124, 225-234.	2.7	20
33	Herbivorous insect decreases plant nutrient uptake: the role of soil nutrient availability and association of belowâ€ground symbionts. Ecological Entomology, 2014, 39, 511-518.	2.2	22
34	Inducible offences affect predator–prey interactions and lifeâ€history plasticity in both predators and prey. Journal of Animal Ecology, 2014, 83, 899-906.	2.8	11
35	Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest. Agricultural and Forest Meteorology, 2014, 197, 26-39.	4.8	54
36	Aphids decelerate litter nitrogen mineralisation through changes in litter quality. Ecological Entomology, 2013, 38, 627-630.	2.2	3

OSAMU KISHIDA

#	Article	IF	CITATIONS
37	Soldiers with large weapons in predator-abundant midsummer: phenotypic plasticity in a eusocial aphid. Evolutionary Ecology, 2013, 27, 847-862.	1.2	11
38	An offensive predator phenotype selects for an amplified defensive phenotype in its prey. Evolutionary Ecology, 2013, 27, 1-11.	1.2	17
39	Histological and MS spectrometric analyses of the modified tissue of bulgy form tadpoles induced by salamander predation. Biology Open, 2012, 1, 308-317.	1.2	7
40	Predation risk suppresses the positive feedback between size structure and cannibalism. Journal of Animal Ecology, 2011, 80, 1278-1287.	2.8	40
41	Evolutionary ecology of inducible morphological plasticity in predator–prey interaction: toward the practical links with population ecology. Population Ecology, 2010, 52, 37-46.	1.2	85
42	Traitâ€mediated indirect interactions in ecological communities. Population Ecology, 2010, 52, 457-459.	1.2	15
43	Topâ€down effects on antagonistic inducible defense and offense. Ecology, 2009, 90, 1217-1226.	3.2	44
44	Reciprocal phenotypic plasticity can lead to stable predator–prey interaction. Journal of Animal Ecology, 2009, 78, 1172-1181.	2.8	38
45	Inducible defenses in prey intensify predator cannibalism. Ecology, 2009, 90, 3150-3158.	3.2	30
46	Identification of a Novel Uromodulin-Like Gene Related to Predator-Induced Bulgy Morph in Anuran Tadpoles by Functional Microarray Analysis. PLoS ONE, 2009, 4, e5936.	2.5	20
47	GEOGRAPHIC VARIATION IN A PREDATOR-INDUCED DEFENSE AND ITS GENETIC BASIS. Ecology, 2007, 88, 1948-1954.	3.2	40
48	Direct and Indirect Induction of a Compensatory Phenotype that Alleviates the Costs of an Inducible Defense. PLoS ONE, 2007, 2, e1084.	2.5	21
49	Flexible architecture of inducible morphological plasticity. Journal of Animal Ecology, 2006, 75, 705-712.	2.8	40
50	RECIPROCAL PHENOTYPIC PLASTICITY IN A PREDATOR–PREY INTERACTION BETWEEN LARVAL AMPHIBIANS. Ecology, 2006, 87, 1599-1604.	3.2	43
51	Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole, Rana pirica, using cDNA subtraction and microarray analysis. Biochemical and Biophysical Research Communications, 2005, 330, 1138-1145.	2.1	22
52	Bulgy tadpoles: inducible defense morph. Oecologia, 2004, 140, 414-421.	2.0	71
53	Coupling of two competitive systems via density dependent migration. Ecological Research, 2001, 16, 359-368.	1.5	11
54	Occurrence of mature male white-spotted charr (Salvelinus leucomaenis) in spring, an unusual season. Ichthyological Research, 0, , 1.	0.8	1

#	Article	IF	CITATIONS
55	Proximate stimuli: An overlooked driving force for riskâ€induced trait responses affecting interactions in aquatic ecosystems. Population Ecology, 0, , .	1.2	0