Jiaji Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671140/publications.pdf Version: 2024-02-01

LIAU CHENC

#	Article	IF	CITATIONS
1	GoldHelix: Gold Nanoparticles Forming 3D Helical Superstructures with Controlled Morphology and Strong Chiroptical Property. ACS Nano, 2017, 11, 3806-3818.	14.6	108
2	Optically Active CdSe-Dot/CdS-Rod Nanocrystals with Induced Chirality and Circularly Polarized Luminescence. ACS Nano, 2018, 12, 5341-5350.	14.6	102
3	A Visible―and NIR‣ight Responsive Photothermal Therapy Agent by Chiralityâ€Dependent MoO _{3â~'} <i>_x</i> Nanoparticles. Advanced Functional Materials, 2020, 30, 1906311.	14.9	77
4	Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab. Nature Communications, 2020, 11, 2046.	12.8	77
5	Polyoxometalateâ€Derived Hexagonal Molybdenum Nitrides (MXenes) Supported by Boron, Nitrogen Codoped Carbon Nanotubes for Efficient Electrochemical Hydrogen Evolution from Seawater. Advanced Functional Materials, 2019, 29, 1805893.	14.9	69
6	All-inorganic copper(<scp>i</scp>)-based ternary metal halides: promising materials toward optoelectronics. Nanoscale, 2020, 12, 15560-15576.	5.6	60
7	Manipulation of Surface Plasmon Resonance in Sub-Stoichiometry Molybdenum Oxide Nanodots through Charge Carrier Control Technique. Journal of Physical Chemistry C, 2017, 121, 5208-5214.	3.1	58
8	Giant Optical Activity and Second Harmonic Generation in 2D Hybrid Copper Halides. Angewandte Chemie - International Edition, 2021, 60, 8441-8445.	13.8	57
9	Tunable Chiroptical Properties from the Plasmonic Band to Metal–Ligand Charge Transfer Band of Cysteineâ€Capped Molybdenum Oxide Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 10236-10240.	13.8	53
10	A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications. Scientific Reports, 2019, 9, 12048.	3.3	47
11	Ligand-Induced Chirality in Asymmetric CdSe/CdS Nanostructures: A Close Look at Chiral Tadpoles. ACS Nano, 2020, 14, 10346-10358.	14.6	45
12	Revival of Zeoliteâ€īemplated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. Advanced Science, 2020, 7, 2001335.	11.2	42
13	Chiral Transition Metal Oxides: Synthesis, Chiral Origins, and Perspectives. Advanced Materials, 2020, 32, e1905585.	21.0	40
14	Endowing inorganic nanomaterials with circularly polarized luminescence. Aggregate, 2022, 3, .	9.9	40
15	Optically active plasmonic resonance in self-assembled nanostructures. Materials Chemistry Frontiers, 2018, 2, 662-678.	5.9	39
16	Chiral CdSe nanoplatelets as an ultrasensitive probe for lead ion sensing. Nanoscale, 2019, 11, 9327-9334.	5.6	39
17	Multiphoton absorption in low-dimensional cesium copper iodide single crystals. Journal of Materials Chemistry C, 2020, 8, 16923-16929.	5.5	33
18	Electrocatalytic Hydrogen Production: Polyoxometalateâ€Derived Hexagonal Molybdenum Nitrides (MXenes) Supported by Boron, Nitrogen Codoped Carbon Nanotubes for Efficient Electrochemical Hydrogen Evolution from Seawater (Adv. Funct. Mater. 8/2019). Advanced Functional Materials, 2019, 29, 1970046.	14.9	28

Jiaji Cheng

#	Article	IF	CITATIONS
19	Shining light on chiral inorganic nanomaterials for biological issues. Theranostics, 2021, 11, 9262-9295.	10.0	27
20	Water-soluble chiral CdSe/CdS dot/rod nanocrystals for two-photon fluorescence lifetime imaging and photodynamic therapy. Nanoscale, 2019, 11, 15245-15252.	5.6	26
21	Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction. APL Materials, 2020, 8, .	5.1	23
22	Janus two-dimensional transition metal dichalcogenides. Journal of Applied Physics, 2022, 131, .	2.5	21
23	Applications of molybdenum oxide nanomaterials in the synergistic diagnosis and treatment of tumor. Applied Nanoscience (Switzerland), 2020, 10, 2069-2083.	3.1	19
24	Giant two- to five-photon absorption in CsPbBr ₂₇ I ₀₃ two-dimensional nanoplatelets. Optics Letters, 2019, 44, 3873.	3.3	18
25	Tunable Chiroptical Properties from the Plasmonic Band to Metal–Ligand Charge Transfer Band of Cysteine apped Molybdenum Oxide Nanoparticles. Angewandte Chemie, 2018, 130, 10393-10397.	2.0	15
26	Optically Active CdSe/CdS Nanoplatelets Exhibiting Both Circular Dichroism and Circularly Polarized Luminescence. Advanced Optical Materials, 2021, 9, 2101142.	7.3	13
27	Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 7232-7238.	4.6	12
28	Strong multiphoton absorption in chiral CdSe/CdS dot/rod nanocrystal-doped poly(vinyl alcohol) films. Optics Letters, 2019, 44, 2256.	3.3	12
29	Circularly Polarized Light Source from Selfâ€Assembled Hybrid Nanoarchitecture. Advanced Optical Materials, 2022, 10, .	7.3	12
30	Plasmon-induced hot electron transfer in AgNW@TiO2@AuNPs nanostructures. Scientific Reports, 2018, 8, 14136.	3.3	11
31	Effects of flameâ€retardant ramie fiber on enhancing performance of the rigid polyurethane foams. Polymers for Advanced Technologies, 2019, 30, 3091-3098.	3.2	10
32	Spectral and Nonlinear Optical Properties of Quasi-Type II CdSe/CdS Nanotadpoles. Journal of Physical Chemistry C, 2020, 124, 27840-27847.	3.1	10
33	Ultrafast Dynamics of Photoexcited Hot Carrier Generation and Injection in AgNWs@TiO ₂ @GNS Nanostructures. Journal of Physical Chemistry C, 2018, 122, 14857-14864.	3.1	9
34	Multiple cell death pathways triggered by temperature-mediated synergistic effect derived from chiral phototheranostic ablation nanoagents. Applied Materials Today, 2021, 23, 101001.	4.3	8
35	Giant Optical Activity and Second Harmonic Generation in 2D Hybrid Copper Halides. Angewandte Chemie, 2021, 133, 8522-8526.	2.0	7
36	Chiroptical Transitions of Enantiomeric Ligandâ€Activated Nickel Oxides. Small, 2022, 18, e2107570.	10.0	7

Jiaji Cheng

#	Article	lF	CITATIONS
37	Perovskite Nanocrystal Luminescent Composite via In-situ Ligand Polymerization Towards Display Application. Journal of Materials Chemistry C, 0, , .	5.5	5
38	Metalâ€ŧo‣igand Charge Transfer Chirality Sensing of d â€Clucose Assisted with GOXâ€Based Enzymatic Reaction. Advanced Materials Technologies, 2020, 5, 2000138.	5.8	4
39	Surface metal-ion-functionalized carbon dots and their application in pH sensing. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	4
40	Authentic Intelligent Machine for Scaling Driven Discovery: A Case for Chiral Quantum Dots. ACS Nano, 2022, 16, 1600-1611.	14.6	4
41	Metal-to-ligand charge transfer chirality-based sensing of mercury ions. Photonics Research, 2021, 9, 213.	7.0	3
42	Lessons learned from fires of the wood caused by the spontaneous combustion of coal dust in underground mines. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1335-1344.	3.6	3
43	Templateâ€Directed Synthesis of Titania Nanocages with Four Tetrahedrally Arranged Open Windows. Chemistry - A European Journal, 2018, 24, 6917-6921.	3.3	2
44	The mechanism of ligand-induced chiral transmission through a top-down selective domain etching process. Materials Chemistry Frontiers, 2022, 6, 1194-1208.	5.9	2