Maciej Cieplak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671109/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?. Trends in Biotechnology, 2016, 34, 922-941.	9.3	181
2	Nanostructured molecularly imprinted polymers for protein chemosensing. Biosensors and Bioelectronics, 2018, 102, 17-26.	10.1	140
3	Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosensors and Bioelectronics, 2015, 74, 960-966.	10.1	129
4	â€~Gate effect' in molecularly imprinted polymers: the current state of understanding. Current Opinion in Electrochemistry, 2019, 16, 50-56.	4.8	66
5	Oriented Immobilization of Protein Templates: A New Trend in Surface Imprinting. ACS Sensors, 2020, 5, 3710-3720.	7.8	62
6	Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin. Biosensors and Bioelectronics, 2017, 94, 155-161.	10.1	47
7	Early diagnosis of fungal infections using piezomicrogravimetric and electric chemosensors based on polymers molecularly imprinted with d-arabitol. Biosensors and Bioelectronics, 2016, 79, 627-635.	10.1	40
8	Synthesis and application of a "plastic antibody―in electrochemical microfluidic platform for oxytocin determination. Biosensors and Bioelectronics, 2018, 100, 251-258.	10.1	39
9	Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone. ACS Applied Materials & Interfaces, 2019, 11, 9265-9276.	8.0	33
10	"Gate Effect―in <i>p</i> -Synephrine Electrochemical Sensing with a Molecularly Imprinted Polymer and Redox Probes. Analytical Chemistry, 2019, 91, 7546-7553.	6.5	28
11	Selective PQQPFPQQ Gluten Epitope Chemical Sensor with a Molecularly Imprinted Polymer Recognition Unit and an Extended-Gate Field-Effect Transistor Transduction Unit. Analytical Chemistry, 2019, 91, 4537-4543.	6.5	27
12	Electrochemical sensor for selective tyramine determination, amplified by a molecularly imprinted polymer film. Bioelectrochemistry, 2021, 138, 107695.	4.6	26
13	Hexagonally Packed Macroporous Molecularly Imprinted Polymers for Chemosensing of Follicle-Stimulating Hormone Protein. ACS Sensors, 2020, 5, 118-126.	7.8	23
14	Self-reporting molecularly imprinted polymer with the covalently immobilized ferrocene redox probe for selective electrochemical sensing of p-synephrine. Sensors and Actuators B: Chemical, 2021, 344, 130276.	7.8	19
15	The synthesis of higher carbon sugars: a study on the rearrangement of higher sugar allylic alcohols. Tetrahedron: Asymmetry, 2011, 22, 780-786.	1.8	17
16	Molecularly Imprinted Polymer Chemosensor for Selective Determination of an <i>N</i> â€Nitrosoâ€ <scp>l</scp> â€proline Food Toxin. Chemistry - A European Journal, 2017, 23, 1942-1949.	3.3	16
17	Electrochemically initiated co-polymerization of monomers of different oxidation potentials for molecular imprinting of electroactive analyte. Sensors and Actuators B: Chemical, 2019, 298, 126884.	7.8	16
18	Protein Determination with Molecularly Imprinted Polymer Recognition Combined with Birefringence Liquid Crystal Detection. Sensors, 2020, 20, 4692.	3.8	16

MACIEJ CIEPLAK

#	Article	IF	CITATIONS
19	Low-oxidation-potential thiophene-carbazole monomers for electro-oxidative molecular imprinting: Selective chemosensing of aripiprazole. Biosensors and Bioelectronics, 2020, 169, 112589.	10.1	15
20	Surface enhancement of a molecularly imprinted polymer film using sacrificial silica beads for increasing <scp>l</scp> -arabitol chemosensor sensitivity and detectability. Journal of Materials Chemistry B, 2017, 5, 6292-6299.	5.8	12
21	Synthesis of higher carbon sugars from dihydroxyacetone and d-arabinose: an organocatalytic approach. Tetrahedron: Asymmetry, 2012, 23, 1213-1217.	1.8	8
22	A trade-off between antifouling and the electrochemical stabilities of PEDOTs. Journal of Materials Chemistry B, 2021, 9, 2717-2726.	5.8	7
23	Selective Impedimetric Chemosensing of Carcinogenic Heterocyclic Aromatic Amine in Pork by dsDNA-Mimicking Molecularly Imprinted Polymer Film-Coated Electrodes. Journal of Agricultural and Food Chemistry, 2021, 69, 14689-14698.	5.2	7
24	A Review on the Stereoselective Synthesis of Higher Carbon Sugars with an Eye to Making Higher Alditols. Current Organic Chemistry, 2014, 18, 327-340.	1.6	6
25	Polymer membrane ion-selective electrodes as a convenient tool for lipases and esterases assays. Preparative Biochemistry and Biotechnology, 2017, 47, 673-677.	1.9	4
26	Synthesis of long-chain monosaccharides via the coupling of three †normal' sugar units via Wittig type methodology: unusual removal of the benzyl group under basic conditions. Tetrahedron: Asymmetry, 2011, 22, 1757-1762.	1.8	3
27	Synthesis of octitols and the respective amino-derivatives from â€~organo-aldols'. Carbohydrate Research, 2015, 403, 98-103.	2.3	2
28	Nanostructured Molecular Imprinted Polymers for Chemosensing of Hormone Proteins. ECS Meeting Abstracts, 2021, MA2021-01, 1690-1690.	0.0	1
29	Semi-Covalent Imprinting for Selective Protein Sensing at a Femtomolar Concentration Level. Proceedings (mdpi), 2017, 1, .	0.2	0
30	Self-Reporting Molecularly Imprinted Polymer for Label-Free Selective Electrochemical Sensing of p-synephrine. Proceedings (mdpi), 2017, 1, .	0.2	0
31	Self-Reporting Molecularly Imprinted Polymer with Covalently Immobilized Ferrocene Redox Probe for Selective Electrochemical Sensing of P-Synephrine. ECS Meeting Abstracts, 2021, MA2021-01, 1368-1368.	0.0	0
32	Capacitive Electrochemical Sensor with Molecularly Imprinted Polymer for Determination of Heterocyclic Aromatic Amines. ECS Meeting Abstracts, 2021, MA2021-01, 1363-1363.	0.0	0
33	Chemosensor Based on Molecularly Imprinted Nanoparticles for Selective Determination of Glyphosate. ECS Meeting Abstracts, 2021, MA2021-01, 1552-1552.	0.0	0
34	Selective Electrochemical Sensing of Human Albumin By Semi-Covalent Imprinting. ECS Meeting Abstracts, 2015, , .	0.0	0
35	Conducting Molecularly Imprinted Polymer (MIP) Chemical Sensors for Toxic N-Nitrosamines Selective Determination in Heat Processed Food of Animal Origin. ECS Meeting Abstracts, 2017, , .	0.0	0
36	CHAPTER 9. Protein Determination Using Molecularly Imprinted Polymer (MIP) Chemosensors. RSC Polymer Chemistry Series, 2018, , 282-329.	0.2	0

#	Article	IF	CITATIONS
37	Electrochemical Sensor for Food Toxins with Molecularly Imprinted Polymer for Selective Determination of Heterocyclic Aromatic Amines. ECS Meeting Abstracts, 2020, MA2020-02, 3681-3681.	0.0	Ο