
Ya-Ju Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3671094/publications.pdf Version: 2024-02-01

YA-LULEE

#	Article	IF	CITATIONS
1	Tuning the Emission Wavelength of Lead Halide Perovskite NCs via Size and Shape Control. ACS Omega, 2022, 7, 565-577.	1.6	13
2	Flexible and Ultranarrow Transmissive Color Filters by Simultaneous Excitations of Triple Resonant Eigenmodes in Hybrid Metallic–Optical Tamm State Devices. ACS Photonics, 2021, 8, 540-549.	3.2	17
3	All-inorganic perovskite quantum dot light-emitting memories. Nature Communications, 2021, 12, 4460.	5.8	62
4	Optical Coherence Tomography/Angiography-Guided Tumor Ablation With a Continuous-Wave Laser Diode. IEEE Access, 2020, 8, 43191-43199.	2.6	2
5	Graphene Quantum Dot Vertical Cavity Surface-Emitting Lasers. ACS Photonics, 2019, 6, 2894-2901.	3.2	8
6	A curvature-tunable random laser. Nanoscale, 2019, 11, 3534-3545.	2.8	50
7	A strain-gauge random laser. APL Materials, 2019, 7, .	2.2	6
8	Early detection of enamel demineralization by optical coherence tomography. Scientific Reports, 2019, 9, 17154.	1.6	27
9	Bending-induced tunable threshold in random laser. , 2019, , .		0
10	Flexible random lasers with tunable lasing emissions. Nanoscale, 2018, 10, 10403-10411.	2.8	49
11	Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors: reply. Optics Express, 2018, 26, A110.	1.7	8
12	Direct formation of transfer-free graphene as current spreading layers on n-ZnO nanorods/p-GaN light-emitting diodes. Applied Physics Express, 2018, 11, 075103.	1.1	6
13	Using Optical Coherence Tomography to Identify of Oral Mucosae with 3D-Printing Probe. Smart Innovation, Systems and Technologies, 2018, , 161-166.	0.5	0
14	Determination of Coefficient of Thermal Expansion in High Power GaN-Based Light-Emitting Diodes via Optical Coherent Tomography. Smart Innovation, Systems and Technologies, 2018, , 147-152.	0.5	0
15	Directly Determining the Coefficient of Thermal Expansion of High-power Light-emitting Diodes by Optical Coherence Tomography. , 2018, , .		0
16	Tunable random lasing emissions by manipulating plasmonic coupling strengths on flexible substrates. , 2018, , .		0
17	Enhancing extracted electroluminescence from light-emitting electrochemical cells by employing high-refractive-index substrates. Organic Electronics, 2017, 51, 149-155.	1.4	20
18	Improving color saturation of blue light-emitting electrochemical cells by plasmonic filters. Organic Electronics, 2017, 51, 70-75.	1.4	10

YA-JU LEE

#	Article	IF	CITATIONS
19	Enhanced Performance of GaN-based Ultraviolet Light Emitting Diodes by Photon Recycling Using Graphene Quantum Dots. Scientific Reports, 2017, 7, 7108.	1.6	23
20	CsPbBr ₃ Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics, 2017, 4, 2281-2289.	3.2	243
21	Determination on the Coefficient of Thermal Expansion in High-Power InGaN-based Light-emitting Diodes by Optical Coherence Tomography. Scientific Reports, 2017, 7, 14390.	1.6	4
22	Coherent and Polarized Random Laser Emissions from Colloidal CdSe/ZnS Quantum Dots Plasmonically Coupled to Ellipsoidal Ag Nanoparticles. Advanced Optical Materials, 2017, 5, 1600746.	3.6	39
23	Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography. Biomedical Optics Express, 2017, 8, 5001.	1.5	31
24	Plasmonically Induced Coherent and Polarized Random Laser Emissions in Colloidal CdSe/ZnS Quantum Dots with Ellipsoidal Ag Nanoparticles. , 2017, , .		0
25	Evaluation of Laser-Assisted Trans-Nail Drug Delivery with Optical Coherence Tomography. Sensors, 2016, 16, 2111.	2.1	19
26	Laser-Scanned Programmable Color Temperature of Electroluminescence from White Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2016, 8, 31799-31805.	4.0	14
27	Characteristics of low-resistivity aluminum-doped zinc oxide films deposited at room temperature by off-axis radio-frequency sputtering on flexible plastic substrates. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	6
28	Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons. Scientific Reports, 2016, 6, 22659.	1.6	50
29	Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes. Nanoscale, 2016, 8, 4463-4474.	2.8	27
30	A demonstration of solid-state white light-emitting electrochemical cells using the integrated on-chip plasmonic notch filters. Journal of Materials Chemistry C, 2016, 4, 1599-1605.	2.7	18
31	Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode. Scientific Reports, 2015, 5, 16739.	1.6	8
32	Optical inspection of solar cells using phase-sensitive optical coherence tomography. Solar Energy Materials and Solar Cells, 2015, 136, 193-199.	3.0	18
33	Numerical Analysis on Polarization-Induced Doping III-Nitride n-i-p Solar Cells. IEEE Photonics Journal, 2015, 7, 1-9.	1.0	7
34	Achieving graded refractive index by use of ZnO nanorods/TiO2 layer to enhance omnidirectional photovoltaic performances of InGaP/GaAs/Ge triple-junction solar cells. Solar Energy Materials and Solar Cells, 2015, 136, 17-24.	3.0	21
35	Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions. Optical Materials Express, 2015, 5, 399.	1.6	10
36	Manipulation of polarization effect to engineer III-nitride HEMTs for normally-off operation. Microelectronic Engineering, 2015, 138, 1-6.	1.1	5

YA-JU LEE

#	Article	IF	CITATIONS
37	Giant enhancement of inverted polymer solar cells efficiency by manipulating dual interlayers with integrated approaches. RSC Advances, 2015, 5, 1549-1556.	1.7	12
38	Direct formation of InN-codoped p-ZnO/n-GaN heterojunction diode by solgel spin-coating scheme. Optics Letters, 2014, 39, 805.	1.7	11
39	Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors. Optics Express, 2014, 22, A1589.	1.7	55
40	Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition. APL Materials, 2014, 2, 056101.	2.2	27
41	Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures. Nanotechnology, 2014, 25, 195401.	1.3	4
42	High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers. Nanoscale Research Letters, 2014, 9, 433.	3.1	31
43	Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells. Applied Physics Letters, 2013, 103, 193503.	1.5	9
44	Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography. Biomedical Optics Express, 2013, 4, 2362.	1.5	34
45	Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. Optics Express, 2013, 21, A953.	1.7	13
46	Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells. Optics Express, 2013, 21, A7.	1.7	16
47	Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications. Optics Express, 2012, 20, 3479.	1.7	16
48	Effect of nanostructured architecture on the enhanced optical absorption in silicon thin-film solar cells. Journal of Electromagnetic Waves and Applications, 2012, 26, 1798-1807.	1.0	6
49	Suppression of efficiency-droop effect of InGaN-based LEDs by using localized high indium quantum wells. Proceedings of SPIE, 2012, , .	0.8	0
50	Quantitative Phase Imaging With Swept-Source Optical Coherence Tomography for Optical Measurement of Nanostructures. IEEE Photonics Technology Letters, 2012, 24, 640-642.	1.3	6
51	Defect detection and property evaluation of indium tin oxide conducting glass using optical coherence tomography. Optics Express, 2011, 19, 7559.	1.7	23
52	Effect of Surface Texture and Backside Patterned Reflector on the AlGaInP Light-Emitting Diode: High Extraction of Waveguided Light. IEEE Journal of Quantum Electronics, 2011, 47, 636-641.	1.0	21
53	Elucidating the Physical Property of the InGaN Nanorod Light-Emitting Diode: Large Tunneling Effect. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 985-989.	1.9	17
54	Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate. Applied Physics Letters, 2011, 98, .	1.5	36

YA-JU LEE

#	Article	IF	CITATIONS
55	Estimating the Junction Temperature of InGaN and AlGaInP Light-Emitting Diodes. Japanese Journal of Applied Physics, 2011, 50, 04DG18.	0.8	4
56	Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment. Journal Physics D: Applied Physics, 2011, 44, 224015.	1.3	5
57	Estimating the Junction Temperature of InGaN and AlGaInP Light-Emitting Diodes. Japanese Journal of Applied Physics, 2011, 50, 04DG18.	0.8	3
58	Determination of Junction Temperature in InGaN and AlGaInP Light-Emitting Diodes. IEEE Journal of Quantum Electronics, 2010, 46, 1450-1455.	1.0	29
59	Stable Temperature Characteristics and Suppression of Efficiency Droop in InGaN Green Light-Emitting Diodes Using Pre-TMIn Flow Treatment. IEEE Photonics Technology Letters, 2010, 22, 1279-1281.	1.3	6
60	Reduction in the Efficiency-Droop Effect of InGaN Green Light-Emitting Diodes Using Gradual Quantum Wells. IEEE Photonics Technology Letters, 2010, 22, 1506-1508.	1.3	46
61	Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode. Optics Express, 2010, 18, A554.	1.7	21
62	High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays. Applied Physics Letters, 2009, 94, 141111.	1.5	42
63	Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1137-1143.	1.9	113
64	Large enhancement of light-extraction efficiency from optically pumped, nanorod light-emitting diodes. Optics Letters, 2009, 34, 2078.	1.7	15
65	Study of GaN-Based Light-Emitting Diodes Grown on Chemical Wet-Etching-Patterned Sapphire Substrate With V-Shaped Pits Roughening Surfaces. Journal of Lightwave Technology, 2008, 26, 1455-1463.	2.7	35
66	Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes. Applied Physics Letters, 2007, 90, 161115.	1.5	42
67	High Brightness GaN-Based Light-Emitting Diodes. Journal of Display Technology, 2007, 3, 118-125.	1.3	43
68	High Light-Extraction GaN-Based Vertical LEDs With Double Diffuse Surfaces. IEEE Journal of Quantum Electronics, 2006, 42, 1196-1201.	1.0	47
69	Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates. IEEE Photonics Technology Letters, 2006, 18, 1152-1154.	1.3	231
70	Fabrication and Characterization of GaN-Based LEDs Grown on Chemical Wet-Etched Patterned Sapphire Substrates. Journal of the Electrochemical Society, 2006, 153, G1106.	1.3	41
71	Improvement in light-output efficiency of near-ultraviolet InGaN–GaN LEDs fabricated on stripe patterned sapphire substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 122, 184-187.	1.7	59
72	Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening. IEEE Photonics Technology Letters, 2005, 17, 2289-2291.	1.3	73