List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3670716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 2021, 384, 403-416.	13.9	7,910
2	Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. New England Journal of Medicine, 2012, 366, 1275-1286.	13.9	1,699
3	Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet, The, 2008, 372, 1881-1893.	6.3	1,560
4	Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. Journal of Virology, 2005, 79, 10108-10125.	1.5	1,025
5	Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science, 2022, 375, 43-50.	6.0	788
6	Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine, 2021, 39, 4423-4428.	1.7	766
7	Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies. Journal of Virology, 2010, 84, 1439-1452.	1.5	589
8	Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. New England Journal of Medicine, 2018, 379, 327-340.	13.9	557
9	Efficacy Trial of a DNA/rAd5 HIV-1 Preventive Vaccine. New England Journal of Medicine, 2013, 369, 2083-2092.	13.9	518
10	Vaccine-Induced Env V1-V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination. Science Translational Medicine, 2014, 6, 228ra39.	5.8	412
11	Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature, 2012, 490, 417-420.	13.7	405
12	Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. New England Journal of Medicine, 2021, 385, 1774-1785.	13.9	402
13	Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. New England Journal of Medicine, 2015, 373, 2025-2037.	13.9	332
14	Nomenclature for Immune Correlates of Protection After Vaccination. Clinical Infectious Diseases, 2012, 54, 1615-1617.	2.9	297
15	Magnitude and Breadth of the Neutralizing Antibody Response in the RV144 and Vax003 HIV-1 Vaccine Efficacy Trials. Journal of Infectious Diseases, 2012, 206, 431-441.	1.9	273
16	Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. New England Journal of Medicine, 2021, 384, 1003-1014.	13.9	270
17	Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection. PLoS ONE, 2014, 9, e87572.	1.1	248
18	COMPASS identifies T-cell subsets correlated with clinical outcomes. Nature Biotechnology, 2015, 33, 610-616.	9.4	232

PETER B GILBERT

#	Article	IF	CITATIONS
19	Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nature Medicine, 2011, 17, 366-371.	15.2	220
20	Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e75665.	1.1	214
21	Prospects for a safe COVID-19 vaccine. Science Translational Medicine, 2020, 12, .	5.8	204
22	Extended Follow-up Confirms Early Vaccine-Enhanced Risk of HIV Acquisition and Demonstrates Waning Effect Over Time Among Participants in a Randomized Trial of Recombinant Adenovirus HIV Vaccine (Step Study). Journal of Infectious Diseases, 2012, 206, 258-266.	1.9	202
23	Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infectious Diseases, The, 2012, 12, 531-537.	4.6	201
24	A Framework for Assessing Immunological Correlates of Protection in Vaccine Trials. Journal of Infectious Diseases, 2007, 196, 1304-1312.	1.9	195
25	The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120. AIDS Research and Human Retroviruses, 2012, 28, 1444-1457.	0.5	191
26	Immune correlates of vaccine protection against HIV-1 acquisition. Science Translational Medicine, 2015, 7, 310rv7.	5.8	179
27	Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science, 2021, , eab3435.	6.0	145
28	Vaccine Efficacy of ALVAC-HIV and Bivalent Subtype C gp120–MF59 in Adults. New England Journal of Medicine, 2021, 384, 1089-1100.	13.9	144
29	chngpt: threshold regression model estimation and inference. BMC Bioinformatics, 2017, 18, 454.	1.2	123
30	Magnitude and Breadth of a Nonprotective Neutralizing Antibody Response in an Efficacy Trial of a Candidate HIVâ€∃ gp120 Vaccine. Journal of Infectious Diseases, 2010, 202, 595-605.	1.9	118
31	Recombinant adenovirus type 5 HIV gag/pol/nef vaccine in South Africa: unblinded, long-term follow-up of the phase 2b HVTN 503/Phambili study. Lancet Infectious Diseases, The, 2014, 14, 388-396.	4.6	108
32	FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial. Journal of Clinical Investigation, 2014, 124, 3879-3890.	3.9	99
33	Antibody Fc effector functions and IgG3 associate with decreased HIV-1 risk. Journal of Clinical Investigation, 2019, 129, 4838-4849.	3.9	95
34	Peptide selection for human immunodeficiency virus type 1 CTL-based vaccine evaluation. Vaccine, 2006, 24, 6893-6904.	1.7	93
35	Statistical Interpretation of the RV144 HIV Vaccine Efficacy Trial in Thailand: A Case Study for Statistical Issues in Efficacy Trials. Journal of Infectious Diseases, 2011, 203, 969-975.	1.9	91
36	A Meta-analysis of Passive Immunization Studies Shows that Serum-Neutralizing Antibody Titer Associates with Protection against SHIV Challenge. Cell Host and Microbe, 2019, 26, 336-346.e3.	5.1	88

#	Article	IF	CITATIONS
37	Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: a phase 1/2 trial. Lancet HIV,the, 2018, 5, e366-e378.	2.1	86
38	Clinical Endpoints for Evaluating Efficacy in COVID-19 Vaccine Trials. Annals of Internal Medicine, 2021, 174, 221-228.	2.0	86
39	Fold Rise in Antibody Titers by Measured by Glycoprotein-Based Enzyme-Linked Immunosorbent Assay Is an Excellent Correlate of Protection for a Herpes Zoster Vaccine, Demonstrated via the Vaccine Efficacy Curve. Journal of Infectious Diseases, 2014, 210, 1573-1581.	1.9	84
40	Neutralizing Antibody Correlates Analysis of Tetravalent Dengue Vaccine Efficacy Trials in Asia and Latin America. Journal of Infectious Diseases, 2018, 217, 742-753.	1.9	80
41	Vaccine-Induced Gag-Specific T Cells Are Associated With Reduced Viremia After HIV-1 Infection. Journal of Infectious Diseases, 2013, 208, 1231-1239.	1.9	73
42	Development and implementation of an international proficiency testing program for a neutralizing antibody assay for HIV-1 in TZM-bl cells. Journal of Immunological Methods, 2012, 375, 57-67.	0.6	69
43	Basis and Statistical Design of the Passive HIV-1 Antibody Mediated Prevention (AMP) Test-of-Concept Efficacy Trials. Statistical Communications in Infectious Diseases, 2017, 9, .	0.2	62
44	Higher T-Cell Responses Induced by DNA/rAd5 HIV-1 Preventive Vaccine Are Associated With Lower HIV-1 Infection Risk in an Efficacy Trial. Journal of Infectious Diseases, 2017, 215, 1376-1385.	1.9	59
45	Viral genetic diversity and protective efficacy of a tetravalent dengue vaccine in two phase 3 trials. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8378-E8387.	3.3	57
46	Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses. EBioMedicine, 2014, 1, 37-45.	2.7	55
47	Analysis of HLA A*02 Association with Vaccine Efficacy in the RV144 HIV-1 Vaccine Trial. Journal of Virology, 2014, 88, 8242-8255.	1.5	55
48	V1V2-specific complement activating serum IgG as a correlate of reduced HIV-1 infection risk in RV144. PLoS ONE, 2017, 12, e0180720.	1.1	55
49	Sieve analysis. Journal of Clinical Epidemiology, 2001, 54, 68-85.	2.4	54
50	Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial. PLoS Computational Biology, 2015, 11, e1003973.	1.5	51
51	HIV-1 infections with multiple founders are associated with higher viral loads than infections with single founders. Nature Medicine, 2015, 21, 1139-1141.	15.2	50
52	HLA class II genes modulate vaccine-induced antibody responses to affect HIV-1 acquisition. Science Translational Medicine, 2015, 7, 296ra112.	5.8	47
53	Immune correlates of the Thai RV144 HIV vaccine regimen in South Africa. Science Translational Medicine, 2019, 11, .	5.8	46
54	Calibration of two validated SARS-CoV-2 pseudovirus neutralization assays for COVID-19 vaccine evaluation. Scientific Reports, 2021, 11, 23921.	1.6	44

#	Article	IF	CITATIONS
55	Population pharmacokinetics analysis of VRC01, an HIV-1 broadly neutralizing monoclonal antibody, in healthy adults. MAbs, 2017, 9, 792-800.	2.6	43
56	Safety and immunogenicity of a multivalent HIV vaccine comprising envelope protein with either DNA or NYVAC vectors (HVTN 096): a phase 1b, double-blind, placebo-controlled trial. Lancet HIV,the, 2019, 6, e737-e749.	2.1	43
57	Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials. PLoS ONE, 2016, 11, e0147812.	1.1	42
58	Simultaneous Inferences on the Contrast of Two Hazard Functions with Censored Observations. Biometrics, 2002, 58, 773-780.	0.8	39
59	HIV-1 Vaccine-Induced T-Cell Reponses Cluster in Epitope Hotspots that Differ from Those Induced in Natural Infection with HIV-1. PLoS Pathogens, 2013, 9, e1003404.	2.1	39
60	Simultaneous Evaluation of the Magnitude and Breadth of a Left- and Right-Censored Multivariate Response, With Application to HIV Vaccine Development. Statistics in Biopharmaceutical Research, 2009, 1, 81-91.	0.6	37
61	Covariability of Selected Amino Acid Positions for HIV Type 1 Subtypes C and B. AIDS Research and Human Retroviruses, 2005, 21, 1016-1030.	0.5	36
62	DNA Priming Increases Frequency of T-Cell Responses to a Vesicular Stomatitis Virus HIV Vaccine with Specific Enhancement of CD8 ⁺ T-Cell Responses by Interleukin-12 Plasmid DNA. Vaccine Journal, 2017, 24, .	3.2	33
63	Nonparametric variable importance assessment using machine learning techniques. Biometrics, 2021, 77, 9-22.	0.8	33
64	Modification of the Association Between T-Cell Immune Responses and Human Immunodeficiency Virus Type 1 Infection Risk by Vaccine-Induced Antibody Responses in the HVTN 505 Trial. Journal of Infectious Diseases, 2018, 217, 1280-1288.	1.9	32
65	Continued Follow-Up of Phambili Phase 2b Randomized HIV-1 Vaccine Trial Participants Supports Increased HIV-1 Acquisition among Vaccinated Men. PLoS ONE, 2015, 10, e0137666.	1.1	30
66	Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults. PLoS ONE, 2017, 12, e0179597.	1.1	29
67	Integrated systems approach defines the antiviral pathways conferring protection by the RV144 HIV vaccine. Nature Communications, 2019, 10, 863.	5.8	27
68	Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in South Africa: AÂrandomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Medicine, 2020, 17, e1003038.	3.9	27
69	Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120. PLoS ONE, 2017, 12, e0185959.	1.1	27
70	Fc Gamma Receptor Polymorphisms Modulated the Vaccine Effect on HIV-1 Risk in the HVTN 505 HIV Vaccine Trial. Journal of Virology, 2019, 93, .	1.5	26
71	A government-led effort to identify correlates of protection for COVID-19 vaccines. Nature Medicine, 2021, 27, 1493-1494.	15.2	26
72	Prediction of VRC01 neutralization sensitivity by HIV-1 gp160 sequence features. PLoS Computational Biology, 2019, 15, e1006952.	1.5	25

#	Article	IF	CITATIONS
73	Vaccine-Induced Antibodies Mediate Higher Antibody-Dependent Cellular Cytotoxicity After Interleukin-15 Pretreatment of Natural Killer Effector Cells. Frontiers in Immunology, 2019, 10, 2741.	2.2	25
74	Estimation of the Optimal Surrogate Based on a Randomized Trial. Biometrics, 2018, 74, 1271-1281.	0.8	24
75	Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial Reveals an Association of Nonspecific Interferon-Î ³ Secretion with Increased HIV-1 Infection Risk: A Cohort-Based Modeling Study. PLoS ONE, 2014, 9, e108631.	1.1	23
76	Effect of rAd5-Vector HIV-1 Preventive Vaccines on HIV-1 Acquisition: A Participant-Level Meta-Analysis of Randomized Trials. PLoS ONE, 2015, 10, e0136626.	1.1	23
77	Weighing the Evidence of Efficacy of Oral PrEP for HIV Prevention in Women in Southern Africa. AIDS Research and Human Retroviruses, 2018, 34, 645-656.	0.5	23
78	HAI and NAI titer correlates of inactivated and live attenuated influenza vaccine efficacy. BMC Infectious Diseases, 2019, 19, 453.	1.3	23
79	Commentary on "Principal Stratification a Goal or a Tool?" by Judea Pearl. International Journal of Biostatistics, 2011, 7, 1-15.	0.4	22
80	Improved estimation of the cumulative incidence of rare outcomes. Statistics in Medicine, 2018, 37, 280-293.	0.8	20
81	Some design issues in phase 2B vs phase 3 prevention trials for testing efficacy of products or concepts. Statistics in Medicine, 2010, 29, 1061-1071.	0.8	19
82	Taking stock of the present and looking ahead: envisioning challenges in the design of future HIV prevention efficacy trials. Lancet HIV,the, 2019, 6, e475-e482.	2.1	19
83	Evaluating the Long-term Efficacy of Coronavirus Disease 2019 (COVID-19) Vaccines. Clinical Infectious Diseases, 2021, 73, 1927-1939.	2.9	19
84	Innate immune signatures to a partially-efficacious HIV vaccine predict correlates of HIV-1 infection risk. PLoS Pathogens, 2021, 17, e1009363.	2.1	19
85	Genome Scanning Tests for Comparing Amino Acid Sequences Between Groups. Biometrics, 2008, 64, 198-207.	0.8	18
86	Antigenic competition in CD4 ⁺ T cell responses in a randomized, multicenter, double-blind clinical HIV vaccine trial. Science Translational Medicine, 2019, 11, .	5.8	18
87	Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals. Journal of AIDS & Clinical Research, 2015, 06, .	0.5	17
88	Projected effectiveness and added value of HIV vaccination campaigns in South Africa: A modeling study. Scientific Reports, 2018, 8, 6066.	1.6	17
89	Modeling cumulative overall prevention efficacy for the VRC01 phase 2b efficacy trials. Human Vaccines and Immunotherapeutics, 2018, 14, 2116-2127.	1.4	17
90	HIV-1 Vaccine Sequences Impact V1V2 Antibody Responses: A Comparison of Two Poxvirus Prime gp120 Boost Vaccine Regimens. Scientific Reports, 2020, 10, 2093.	1.6	17

#	Article	IF	CITATIONS
91	Sieve analysis to understand how SARS-CoV-2 diversity can impact vaccine protection. PLoS Pathogens, 2021, 17, e1009406.	2.1	16
92	Feasibility and Successful Enrollment in a Proof-of-Concept HIV Prevention Trial of VRC01, a Broadly Neutralizing HIV-1 Monoclonal Antibody. Journal of Acquired Immune Deficiency Syndromes (1999), 2021, 87, 671-679.	0.9	16
93	Sequential Immunization with gp140 Boosts Immune Responses Primed by Modified Vaccinia Ankara or DNA in HIV-Uninfected South African Participants. PLoS ONE, 2016, 11, e0161753.	1.1	16
94	Landscapes of binding antibody and T-cell responses to pox-protein HIV vaccines in Thais and South Africans. PLoS ONE, 2020, 15, e0226803.	1.1	16
95	Inferences on relative failure rates in stratified mark-specific proportional hazards models with missing marks, with application to human immunodeficiency virus vaccine efficacy trials. Journal of the Royal Statistical Society Series C: Applied Statistics, 2015, 64, 49-73.	0.5	15
96	Estimating and Testing Vaccine Sieve Effects Using Machine Learning. Journal of the American Statistical Association, 2019, 114, 1038-1049.	1.8	15
97	Efficient nonparametric inference on the effects of stochastic interventions under twoâ€phase sampling, with applications to vaccine efficacy trials. Biometrics, 2021, 77, 1241-1253.	0.8	15
98	Evaluating the Efficacy of Coronavirus Disease 2019 Vaccines. Clinical Infectious Diseases, 2020, 73, 1540-1544.	2.9	15
99	A Deferred-Vaccination Design to Assess Durability of COVID-19 Vaccine Effect After the Placebo Group Is Vaccinated. Annals of Internal Medicine, 2021, 174, 1118-1125.	2.0	15
100	Selection of HIV vaccine candidates for concurrent testing in an efficacy trial. Current Opinion in Virology, 2016, 17, 57-65.	2.6	14
101	Pharmacokinetics and predicted neutralisation coverage of VRC01 in HIV-uninfected participants of the Antibody Mediated Prevention (AMP) trials. EBioMedicine, 2021, 64, 103203.	2.7	14
102	Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition. Journal of Causal Inference, 2015, 3, 157-175.	0.5	13
103	Predicting Overall Vaccine Efficacy in a New Setting by Re-calibrating Baseline Covariate and Intermediate Response Endpoint Effect Modifiers of Type-Specific Vaccine Efficacy. Epidemiologic Methods, 2016, 5, 93-112.	0.8	13
104	Peptide Targeted by Human Antibodies Associated with HIV Vaccine-Associated Protection Assumes a Dynamic α-Helical Structure. PLoS ONE, 2017, 12, e0170530.	1.1	13
105	RV144 HIV-1 vaccination impacts post-infection antibody responses. PLoS Pathogens, 2020, 16, e1009101.	2.1	13
106	Antibody to HSV gD peptide induced by vaccination does not protect against HSV-2 infection in HSV-2 seronegative women. PLoS ONE, 2017, 12, e0176428.	1.1	12
107	Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment. Viruses, 2019, 11, 607.	1.5	12
108	Assessment of the long-term efficacy of a dengue vaccine against symptomatic, virologically-confirmed dengue disease by baseline dengue serostatus. Vaccine, 2020, 38, 3531-3536.	1.7	12

#	Article	IF	CITATIONS
109	A General Framework for Inference on Algorithm-Agnostic Variable Importance. Journal of the American Statistical Association, 2023, 118, 1645-1658.	1.8	12
110	Mark-specific hazard ratio model with missing multivariate marks. Lifetime Data Analysis, 2016, 22, 606-625.	0.4	11
111	FCGR2C Polymorphisms Associated with HIV-1 Vaccine Protection Are Linked to Altered Gene Expression of Fc-Ĩ³ Receptors in Human B Cells. PLoS ONE, 2016, 11, e0152425.	1.1	11
112	Analysis of the HIV Vaccine Trials Network 702 Phase 2b–3 HIV-1 Vaccine Trial in South Africa Assessing RV144 Antibody and T-Cell Correlates of HIV-1 Acquisition Risk. Journal of Infectious Diseases, 2022, 226, 246-257.	1.9	11
113	Phase I/II Randomized Trial of Safety and Immunogenicity of LIPO-5 Alone, ALVAC-HIV (vCP1452) Alone, and ALVAC-HIV (vCP1452) Prime/LIPO-5 Boost in Healthy, HIV-1-Uninfected Adult Participants. Vaccine Journal, 2014, 21, 1589-1599.	3.2	10
114	Statistical Learning Methods to Determine Immune Correlates of Herpes Zoster in Vaccine Efficacy Trials. Journal of Infectious Diseases, 2018, 218, S99-S101.	1.9	10
115	Mathematical Modeling of Vaccines That Prevent SARS-CoV-2 Transmission. Viruses, 2021, 13, 1921.	1.5	10
116	Tracking SARS-CoV-2 Spike Protein Mutations in the United States (January 2020—March 2021) Using a Statistical Learning Strategy. Viruses, 2022, 14, 9.	1.5	10
117	Optimal auxiliary-covariate-based two-phase sampling design for semiparametric efficient estimation of a mean or mean difference, with application to clinical trials. Statistics in Medicine, 2014, 33, 901-917.	0.8	9
118	Predictors of durable immune responses six months after the last vaccination in preventive HIV vaccine trials. Vaccine, 2017, 35, 1184-1193.	1.7	9
119	Assessing pharmacokinetic marker correlates of outcome, with application to antibody prevention efficacy trials. Statistics in Medicine, 2019, 38, 4503-4518.	0.8	9
120	Microneutralization assay titer correlates analysis in two phase 3 trials of the CYD-TDV tetravalent dengue vaccine in Asia and Latin America. PLoS ONE, 2020, 15, e0234236.	1.1	9
121	Super LeArner Prediction of NAb Panels (SLAPNAP): a containerized tool for predicting combination monoclonal broadly neutralizing antibody sensitivity. Bioinformatics, 2021, 37, 4187-4192.	1.8	9
122	Evaluating Vaccine Efficacy Against Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Clinical Infectious Diseases, 2022, 74, 544-552.	2.9	9
123	Bridging Efficacy of a Tetravalent Dengue Vaccine from Children/Adolescents to Adults in Highly Endemic Countries Based on Neutralizing Antibody Response. American Journal of Tropical Medicine and Hygiene, 2019, 101, 164-179.	0.6	9
124	Power/sample size calculations for assessing correlates of risk in clinical efficacy trials. Statistics in Medicine, 2016, 35, 3745-3759.	0.8	8
125	A joint model for mixed and truncated longitudinal data and survival data, with application to HIV vaccine studies. Biostatistics, 2018, 19, 374-390.	0.9	8
126	Antibody and cellular responses to HIV vaccine regimens with DNA plasmid as compared with ALVAC priming: An analysis of two randomized controlled trials. PLoS Medicine, 2020, 17, e1003117.	3.9	8

PETER B GILBERT

#	Article	IF	CITATIONS
127	Optimizing clinical dosing of combination broadly neutralizing antibodies for HIV prevention. PLoS Computational Biology, 2022, 18, e1010003.	1.5	8
128	Revisiting the Correlate of Reduced HIV Infection Risk in the Rv144 Vaccine Trial. Journal of Virology, 2019, 93, .	1.5	7
129	Inference on treatment effect modification by biomarker response in a three-phase sampling design. Biostatistics, 2020, 21, 545-560.	0.9	7
130	Meta-analysis of HIV-1 vaccine elicited mucosal antibodies in humans. Npj Vaccines, 2021, 6, 56.	2.9	7
131	Sensitivity Analysis of Per-Protocol Time-to-Event Treatment Efficacy in Randomized Clinical Trials. Journal of the American Statistical Association, 2013, 108, 789-800.	1.8	6
132	A regularized estimation approach for caseâ€cohort periodic followâ€up studies with an application to HIV vaccine trials. Biometrical Journal, 2020, 62, 1176-1191.	0.6	6
133	Modeling HIV vaccine trials of the future. Current Opinion in HIV and AIDS, 2016, 11, 620-627.	1.5	5
134	Causal isotonic regression. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2020, 82, 719-747.	1.1	5
135	Innovative vaccine approaches—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1511, 59-86.	1.8	5
136	Calibration weighted estimation of semiparametric transformation models for twoâ€phase sampling. Statistics in Medicine, 2015, 34, 1695-1707.	0.8	4
137	SieveSifter: a web-based tool for visualizing the sieve analyses of HIV-1 vaccine efficacy trials. Bioinformatics, 2017, 33, 2386-2388.	1.8	4
138	Search continues for a CMV vaccine for transplant recipients. Lancet Haematology,the, 2016, 3, e58-e59.	2.2	3
139	Brief Report: Prediction of Serum HIV-1 Neutralization Titers After Passive Administration of VRC01. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 83, 434-439.	0.9	3
140	Generating Survival Times Using Cox Proportional Hazards Models with Cyclic and Piecewise Time-Varying Covariates. Statistics in Biosciences, 2020, 12, 324-339.	0.6	3
141	Effect of HIV Envelope Vaccination on the Subsequent Antibody Response to HIV Infection. MSphere, 2020, 5, .	1.3	3
142	Associations of human leukocyte antigen with neutralizing antibody titers in a tetravalent dengue vaccine phase 2 efficacy trial in Thailand. Human Immunology, 2022, 83, 53-60.	1.2	3
143	Use of placebos in Phase 1 preventive HIV vaccine clinical trials. Vaccine, 2015, 33, 749-752.	1.7	2
144	Ongoing Vaccine and Monoclonal Antibody HIV Prevention Efficacy Trials and Considerations for Sequel Efficacy Trial Designs. Statistical Communications in Infectious Diseases, 2019, 11, .	0.2	2

PETER B GILBERT

0

#	Article	IF	CITATIONS
145	RV144 vaccine imprinting constrained HIV-1 evolution following breakthrough infection. Virus Evolution, 2021, 7, veab057.	2.2	2
146	Methods for comparing durability of immune responses between vaccine regimens in early-phase trials. Statistical Methods in Medical Research, 2020, 29, 78-93.	0.7	1
147	Analysis of Neutralizing Antibodies as a Correlate of Instantaneous Risk of Hospitalized Dengue in Placebo Recipients of Dengue Vaccine Efficacy Trials. Journal of Infectious Diseases, 2022, 225, 332-340.	1.9	1
148	Assessing trends in vaccine efficacy by pathogen genetic distance. Journal De La SFdS, 2020, 161, 164-175.	0.5	1
149	Rejoinder to "A Note on Twoâ€Sample Tests for Comparing Intraâ€Individual Genetic Sequence Diversity Between Populationsâ€: Biometrics, 2012, 68, 1326-1326.	0.8	0
150	Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial. AIDS Research and Human Retroviruses, 2014, 30, A25-A26.	0.5	0
151	Reply to Dunning. Journal of Infectious Diseases, 2015, 212, 1521.2-1523.	1.9	0
152	Estimation of conditional cumulative incidence functions under generalized semiparametric regression models with missing covariates, with application to analysis of biomarker correlates in vaccine trials. Canadian Journal of Statistics, 0, , .	0.6	0
153	Title is missing!. , 2020, 16, e1007626.		0
154	Title is missing!. , 2020, 16, e1007626.		0
155	Title is missing!. , 2020, 16, e1007626.		0
156	Title is missing!. , 2020, 16, e1007626.		0
157	Title is missing!. , 2020, 15, e0234236.		0
158	Title is missing!. , 2020, 15, e0234236.		0
159	Title is missing!. , 2020, 15, e0234236.		0

160

Title is missing!. , 2020, 15, e0234236.