Craig Winstanley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3670644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A pipeline to evaluate inhibitors of the Pseudomonas aeruginosa exotoxin U. Biochemical Journal, 2021, 478, 647-668.	1.7	13
2	Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microbial Genomics, 2021, 7, .	1.0	12
3	AcGI1, a novel genomic island carrying antibiotic resistance integron In687 in multidrug resistant Achromobacter xylosoxidans in a teaching hospital in Thailand. FEMS Microbiology Letters, 2020, 367, .	0.7	4
4	A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nature Communications, 2020, 11, 1370.	5.8	90
5	Increasing prevalence of a fluoroquinolone resistance mutation amongst Campylobacter jejuni isolates from four human infectious intestinal disease studies in the United Kingdom. PLoS ONE, 2020, 15, e0227535.	1.1	9
6	Pseudomonas aeruginosa and microbial keratitis. Journal of Medical Microbiology, 2020, 69, 3-13.	0.7	94
7	Ivacaftor Is Associated with Reduced Lung Infection by Key Cystic Fibrosis Pathogens. A Cohort Study Using National Registry Data. Annals of the American Thoracic Society, 2019, 16, 1375-1382.	1.5	68
8	A Large-Scale Whole-Genome Comparison Shows that Experimental Evolution in Response to Antibiotics Predicts Changes in Naturally Evolved Clinical Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	31
9	Transposable temperate phages promote the evolution of divergent social strategies in <i>Pseudomonas aeruginosa</i> populations. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191794.	1.2	13
10	Pseudomonas aeruginosa Toxin ExoU as a Therapeutic Target in the Treatment of Bacterial Infections. Microorganisms, 2019, 7, 707.	1.6	39
11	Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. Journal of Medical Microbiology, 2019, 68, 1591-1595.	0.7	16
12	Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely large multireplicon genomes. Microbial Genomics, 2019, 5, .	1.0	26
13	A Fully Integrated Real-Time Detection, Diagnosis, and Control of Community Diarrheal Disease Clusters and Outbreaks (the INTEGRATE Project): Protocol for an Enhanced Surveillance System. JMIR Research Protocols, 2019, 8, e13941.	0.5	4
14	Cross-infection risk in patients with bronchiectasis: a position statement from the European Bronchiectasis Network (EMBARC), EMBARC/ELF patient advisory group and European Reference Network (ERN-Lung) Bronchiectasis Network. European Respiratory Journal, 2018, 51, 1701937.	3.1	23
15	Pseudomonas aeruginosa and Bronchiectasis. , 2018, , 157-180.		1
16	Can We Manipulate the Evolutionary Biology of Pathogens for Clinical Benefit?. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 143-144.	1.4	1
17	Editorial: complexity and adaptability: an introduction to the special thematic issue on the genus Pseudomonas. FEMS Microbiology Letters, 2018, 365, .	0.7	1
18	The Antimicrobial Activity of a Carbon Monoxide Releasing Molecule (EBOR-CORM-1) Is Shaped by Intraspecific Variation within Pseudomonas aeruginosa Populations. Frontiers in Microbiology, 2018, 9, 195.	1.5	30

CRAIG WINSTANLEY

#	Article	IF	CITATIONS
19	Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Nature Communications, 2018, 9, 2635.	5.8	28
20	Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiology Letters, 2018, 365, .	0.7	67
21	Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a Pseudomonas aeruginosa epidemic strain. Microbial Genomics, 2018, 4, .	1.0	19
22	Phage therapy is highly effective against chronic lung infections with <i>Pseudomonas aeruginosa</i> . Thorax, 2017, 72, 666-667.	2.7	161
23	<i>Pseudomonas aeruginosa</i> adaptation and diversification in the non-cystic fibrosis bronchiectasis lung. European Respiratory Journal, 2017, 49, 1602108.	3.1	75
24	High virulence sub-populations in Pseudomonas aeruginosa long-term cystic fibrosis airway infections. BMC Microbiology, 2017, 17, 30.	1.3	44
25	Evolutionary diversification of Pseudomonas aeruginosa in an artificial sputum model. BMC Microbiology, 2017, 17, 3.	1.3	38
26	Campylobacter jejuni transcriptome changes during loss of culturability in water. PLoS ONE, 2017, 12, e0188936.	1.1	13
27	Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8266-8271.	3.3	102
28	Temperate phages enhance pathogen fitness in chronic lung infection. ISME Journal, 2016, 10, 2553-2555.	4.4	69
29	The role of temperate bacteriophages in bacterial infection. FEMS Microbiology Letters, 2016, 363, fnw015.	0.7	144
30	Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends in Microbiology, 2016, 24, 327-337.	3.5	588
31	Genes Required for Free Phage Production are Essential for <i>Pseudomonas aeruginosa</i> Chronic Lung Infections. Journal of Infectious Diseases, 2016, 213, 395-402.	1.9	17
32	Refined analyses suggest that recombination is a minor source of genomic diversity in Pseudomonas aeruginosa chronic cystic fibrosis infections. Microbial Genomics, 2016, 2, e000051.	1.0	11
33	Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Frontiers in Microbiology, 2015, 6, 1036.	1.5	144
34	Lytic activity by temperate phages of <i>Pseudomonas aeruginosa</i> in long-term cystic fibrosis chronic lung infections. ISME Journal, 2015, 9, 1391-1398.	4.4	70
35	Divergent, Coexisting <i>Pseudomonas aeruginosa</i> Lineages in Chronic Cystic Fibrosis Lung Infections. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 775-785.	2.5	148
36	Social network analysis of Pseudomonas aeruginosa in cystic fibrosis. Lancet Respiratory Medicine,the, 2015, 3, 595-596.	5.2	0

#	Article	IF	CITATIONS
37	Bacteriophage Delivery by Nebulization and Efficacy Against Phenotypically Diverse <i>Pseudomonas aeruginosa</i> from Cystic Fibrosis Patients. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 353-360.	0.7	51
38	Divergence of a strain of Pseudomonas aeruginosa during an outbreak of ovine mastitis. Veterinary Microbiology, 2015, 175, 105-113.	0.8	15
39	Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains. Microbiology (United) Tj ETQq1 1 0.7	8431047rgB7	[/Owerlock]
40	Turnover of strains and intraclonal variation amongst Pseudomonas aeruginosa isolates from paediatric CF patients. Diagnostic Microbiology and Infectious Disease, 2014, 80, 324-326.	0.8	11
41	Colonic mucosa-associated diffusely adherent <i>afaC+ Escherichia coli</i> expressing <i>lpfA</i> and <i>pks</i> are increased in inflammatory bowel disease and colon cancer. Gut, 2014, 63, 761-770.	6.1	203
42	Role of environmental survival in transmission of <i>Campylobacter jejuni</i> . FEMS Microbiology Letters, 2014, 356, 8-19.	0.7	152
43	Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nature Communications, 2014, 5, 4780.	5.8	82
44	Molecular epidemiological analysis suggests cross-infection with Pseudomonas aeruginosa is rare in non-cystic fibrosis bronchiectasis. European Respiratory Journal, 2014, 43, 900-903.	3.1	25
45	Comparative Genomics of Isolates of a Pseudomonas aeruginosa Epidemic Strain Associated with Chronic Lung Infections of Cystic Fibrosis Patients. PLoS ONE, 2014, 9, e87611.	1.1	95
46	The B Lymphocyte Differentiation Factor (BAFF) Is Expressed in the Airways of Children with CF and in Lungs of Mice Infected with Pseudomonas aeruginosa. PLoS ONE, 2014, 9, e95892.	1.1	11
47	Sub-inhibitory concentrations of some antibiotics can drive diversification of Pseudomonas aeruginosa populations in artificial sputum medium. BMC Microbiology, 2013, 13, 170.	1.3	35
48	Extensive diversification is a common feature of Pseudomonas aeruginosa populations during respiratory infections in cystic fibrosis. Journal of Cystic Fibrosis, 2013, 12, 790-793.	0.3	50
49	Developing an international <i>Pseudomonas aeruginosa</i> reference panel. MicrobiologyOpen, 2013, 2, 1010-1023.	1.2	94
50	Intraclonal genetic diversity amongst cystic fibrosis and keratitis isolates of Pseudomonas aeruginosa. Journal of Medical Microbiology, 2013, 62, 208-216.	0.7	6
51	Soluble plantain fibre blocks adhesion and M-cell translocation of intestinal pathogens. Journal of Nutritional Biochemistry, 2013, 24, 97-103.	1.9	46
52	Complete Genome Sequence of the Arcobacter butzleri Cattle Isolate 7h1h. Genome Announcements, 2013, 1, .	0.8	19
53	Halting the spread of epidemic Pseudomonas aeruginosa in an adult cystic fibrosis centre: a prospective cohort study. JRSM Short Reports, 2013, 4, 1-8.	0.6	40
54	Genomic Characterisation of Invasive Non-Typhoidal Salmonella enterica Subspecies enterica Serovar Bovismorbificans Isolates from Malawi. PLoS Neglected Tropical Diseases, 2013, 7, e2557.	1.3	24

CRAIG WINSTANLEY

#	Article	IF	CITATIONS
55	Exploring the Diversity of Arcobacter butzleri from Cattle in the UK Using MLST and Whole Genome Sequencing. PLoS ONE, 2013, 8, e55240.	1.1	43
56	Use of Artificial Sputum Medium to Test Antibiotic Efficacy Against Pseudomonas aeruginosa in Conditions More Relevant to the Cystic Fibrosis Lung. Journal of Visualized Experiments, 2012, , e3857.	0.2	106
57	Transmissible strains of <i>Pseudomonas aeruginosa</i> in cystic fibrosis lung infections. European Respiratory Journal, 2012, 40, 227-238.	3.1	141
58	Novel therapeutic strategies to counter <i>Pseudomonas aeruginosa</i> infections. Expert Review of Anti-Infective Therapy, 2012, 10, 219-235.	2.0	46
59	Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiology, 2012, 12, 216.	1.3	43
60	Genotypic analysis of UK keratitis-associated Pseudomonas aeruginosa suggests adaptation to environmental water as a key component in the development of eye infections. FEMS Microbiology Letters, 2012, 334, 79-86.	0.7	18
61	<i>Pseudomonas aeruginosa</i> Population Diversity and Turnover in Cystic Fibrosis Chronic Infections. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1674-1679.	2.5	229
62	Genomic variations define divergence of water/wildlifeâ€associated <i>Campylobacter jejuni</i> niche specialists from common clonal complexes. Environmental Microbiology, 2011, 13, 1549-1560.	1.8	52
63	<i>Pseudomonas</i> genomes: diverse and adaptable. FEMS Microbiology Reviews, 2011, 35, 652-680.	3.9	765
64	Effect of Antibiotic Treatment on Bacteriophage Production by a Cystic Fibrosis Epidemic Strain of <i>Pseudomonas aeruginosa</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 426-428.	1.4	54
65	Genetic Characterization Indicates that a Specific Subpopulation of Pseudomonas aeruginosa Is Associated with Keratitis Infections. Journal of Clinical Microbiology, 2011, 49, 993-1003.	1.8	81
66	Fluctuations in phenotypes and genotypes within populations of Pseudomonasaeruginosa in the cystic fibrosis lung during pulmonary exacerbations. Journal of Medical Microbiology, 2010, 59, 472-481.	0.7	89
67	A Subtype of aPseudomonas aeruginosaCystic Fibrosis Epidemic Strain Exhibits Enhanced Virulence in a Murine Model of Acute Respiratory Infection. Journal of Infectious Diseases, 2010, 202, 935-942.	1.9	40
68	Empyema due to a highly transmissible Pseudomonas aeruginosa strain in an adult cystic fibrosis patient. Journal of Medical Microbiology, 2010, 59, 614-616.	0.7	3
69	Impact of <i>Pseudomonas aeruginosa</i> Genomic Instability on the Application of Typing Methods for Chronic Cystic Fibrosis Infections. Journal of Clinical Microbiology, 2010, 48, 2053-2059.	1.8	54
70	Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of <i>Pseudomonas aeruginosa</i> . Genome Research, 2009, 19, 12-23.	2.4	317
71	The role of quorum sensing in chronic cystic fibrosis <i>Pseudomonas aeruginosa</i> infections. FEMS Microbiology Letters, 2009, 290, 1-9.	0.7	166
72	Identification and distribution of accessory genome DNA sequences from an invasive African isolate of <i>Salmonella</i> â€ÂfHeidelberg. FEMS Microbiology Letters, 2009, 298, 29-36.	0.7	15

#	Article	IF	CITATIONS
73	Characterization of epithelial IL-8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine. Inflammatory Bowel Diseases, 2008, 14, 162-175.	0.9	77
74	A subset of mucosa-associated Escherichia coli isolates from patients with colon cancer, but not Crohn's disease, share pathogenicity islands with urinary pathogenic E. coli. Microbiology (United) Tj ETQq0 0 (0 rg bī.7 0ve	erlo cks 10 Tf 50
75	Diagnostic multiplex PCR assay for the identification of the Liverpool, Midlands 1 and Manchester CF epidemic strains of Pseudomonas aeruginosa. Journal of Cystic Fibrosis, 2008, 7, 258-261.	0.3	30
76	In Vivo Growth of Pseudomonas aeruginosa Strains PAO1 and PA14 and the Hypervirulent Strain LESB58 in a Rat Model of Chronic Lung Infection. Journal of Bacteriology, 2008, 190, 2804-2813.	1.0	89
77	Subtractive Hybridization. Springer Protocols, 2008, , 227-238.	0.1	0
78	Use of suppression subtractive hybridisation to extend our knowledge of genome diversity in Campylobacter jejuni. BMC Genomics, 2007, 8, 110.	1.2	10
79	Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiology, 2007, 7, 45.	1.3	140
80	Identification, Typing, and Insecticidal Activity of Xenorhabdus Isolates from Entomopathogenic Nematodes in United Kingdom Soil and Characterization of the xpt Toxin Loci. Applied and Environmental Microbiology, 2006, 72, 5895-5907.	1.4	64
81	Development of a diagnostic test for the Midlands 1 cystic fibrosis epidemic strain of Pseudomonas aeruginosa. Journal of Medical Microbiology, 2006, 55, 1085-1091.	0.7	13
82	Identical Burkholderia cepacia complex strain types isolated from multiple patients attending a hospital in Brazil. Journal of Medical Microbiology, 2006, 55, 247-249.	0.7	4
83	Use of a Variable Amplicon Typing Scheme Reveals Considerable Variation in the Accessory Genomes of Isolates of Burkholderia pseudomallei. Journal of Clinical Microbiology, 2006, 44, 1323-1334.	1.8	22
84	Use of suppression subtractive hybridization to examine the accessory genome of the Liverpool cystic fibrosis epidemic strain of Pseudomonas aeruginosa. Journal of Medical Microbiology, 2006, 55, 677-688.	0.7	26
85	Caenorhabditis elegans killing assay as an infection model to study the role of type III secretion in Burkholderia cenocepacia. Journal of Medical Microbiology, 2006, 55, 967-969.	0.7	11
86	Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. Journal of Medical Microbiology, 2005, 54, 519-526.	0.7	57
87	A Cystic Fibrosis Epidemic Strain of Pseudomonas aeruginosa Displays Enhanced Virulence and Antimicrobial Resistance. Journal of Bacteriology, 2005, 187, 4908-4920.	1.0	183
88	Isolation of <i>Waddlia malaysiensis</i> , A Novel Intracellular Bacterium, from Fruit Bat (<i>Eonycteris spelaea</i>). Emerging Infectious Diseases, 2005, 11, 271-277.	2.0	53
89	Conservation of the opcL gene encoding the peptidoglycan-associated outer-membrane lipoprotein among representatives of the Burkholderia cepacia complex. Journal of Medical Microbiology, 2004, 53, 389-398.	0.7	12
90	Sequence divergence in type III secretion gene clusters of theBurkholderia cepaciacomplex. FEMS Microbiology Letters, 2004, 235, 229-235.	0.7	12

CRAIG WINSTANLEY

#	Article	IF	CITATIONS
91	Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes. Archives of Microbiology, 2003, 179, 214-223.	1.0	24
92	Improved flagellin genotyping in theBurkholderia cepaciacomplex. FEMS Microbiology Letters, 2003, 229, 9-14.	0.7	6
93	Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology (United Kingdom), 2003, 149, 821-831.	0.7	90
94	PCR-Based Detection of a Cystic Fibrosis Epidemic Strain of Pseudomonas Aeruginosa. Molecular Diagnosis and Therapy, 2003, 7, 195-200.	1.3	20
95	Molecular Typing of, and Distribution of Genetic Markers among, Burkholderia cepacia Complex Isolates from Brazil. Journal of Clinical Microbiology, 2003, 41, 4148-4153.	1.8	22
96	PCR-Based Detection of a Cystic Fibrosis Epidemic Strain of Pseudomonas Aeruginosa. Molecular Diagnosis and Therapy, 2003, 7, 195-200.	1.3	21
97	Use of Subtractive Hybridization To Identify a Diagnostic Probe for a Cystic Fibrosis Epidemic Strain of Pseudomonas aeruginosa. Journal of Clinical Microbiology, 2002, 40, 4607-4611.	1.8	48
98	Persistent and aggressive bacteria in the lungs of cystic fibrosis children. British Medical Bulletin, 2002, 61, 81-96.	2.7	72
99	Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei. Journal of Medical Microbiology, 2002, 51, 374-384.	0.7	105
100	Spot the difference: applications of subtractive hybridisation to the study of bacterial pathogens. Journal of Medical Microbiology, 2002, 51, 459-467.	0.7	53
101	A putative type III secretion gene cluster is widely distributed in theBurkholderia cepaciacomplex but absent from genomovar I. FEMS Microbiology Letters, 2001, 203, 103-108.	0.7	23
102	Flagellin Gene Sequence Variation in the genus Pseudomonas. Systematic and Applied Microbiology, 2001, 24, 157-165.	1.2	18
103	Type III secretion systems and pathogenicity islands. Journal of Medical Microbiology, 2001, 50, 116-126.	0.7	61
104	Flagellin gene PCR-RFLP analysis of a panel of strains from the Burkholderia cepacia complex. Journal of Medical Microbiology, 2001, 50, 728-731.	0.7	11
105	Presence of Type III Secretion Genes in <i>Burkholderia pseudomallei</i> Correlates with Ara ^{â^²} Phenotypes. Journal of Clinical Microbiology, 2000, 38, 883-885.	1.8	51
106	Analysis of fliC variation among clinical isolates of Burkholderia cepacia. Journal of Medical Microbiology, 1999, 48, 657-662.	0.7	8
107	Comparison of Flagellin Genes from Clinical and Environmental <i>Pseudomonas aeruginosa</i> Isolates. Applied and Environmental Microbiology, 1999, 65, 1175-1179.	1.4	21
108	Variation in Flagellin Genes and Proteins of <i>Burkholderia cepacia</i> . Journal of Bacteriology, 1998, 180, 1110-1118.	1.0	38

#	Article	IF	CITATIONS
109	The bacterial flagellin gene as a biomarker for detection, population genetics and epidemiological analysis. Microbiology (United Kingdom), 1997, 143, 3071-3084.	0.7	96
110	Spread of β-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet, The, 1996, 348, 639-642.	6.3	392
111	Rapid Immunocapture of <i>Pseudomonas putida</i> Cells from Lake Water by Using Bacterial Flagella. Applied and Environmental Microbiology, 1991, 57, 503-509.	1.4	48