List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/367019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. Nature Materials, 2022, 21, 110-119.	27.5	79
2	Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut, 2022, 71, 2284-2299.	12.1	33
3	Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene, 2022, 41, 2811-2823.	5.9	10
4	Loss of Cxcr2 in Myeloid Cells Promotes Tumour Progression and T Cell Infiltration in Invasive Bladder Cancer. Bladder Cancer, 2022, , 1-14.	0.4	0
5	Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. Nature Cancer, 2022, 3, 852-865.	13.2	37
6	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology, 2021, 160, 362-377.e13.	1.3	90
7	Deep Learning-Based Annotation Transfer between Molecular Imaging Modalities: An Automated Workflow for Multimodal Data Integration. Analytical Chemistry, 2021, 93, 3061-3071.	6.5	31
8	An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nature Communications, 2021, 12, 1623.	12.8	18
9	Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma Determine Response to SLC7A11 Inhibition. Cancer Research, 2021, 81, 3461-3479.	0.9	62
10	Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nature Communications, 2021, 12, 3414.	12.8	65
11	EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Current Biology, 2021, 31, 2550-2560.e5.	3.9	32
12	Genetic Screens Identify a Context-Specific PI3K/p27Kip1 Node Driving Extrahepatic Biliary Cancer. Cancer Discovery, 2021, 11, 3158-3177.	9.4	12
13	Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Advanced Drug Delivery Reviews, 2021, 174, 265-293.	13.7	53
14	Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell, 2021, 39, 1227-1244.e20.	16.8	158
15	New Insights Into Pancreatic Cancer: Notes from a Virtual Meeting. Gastroenterology, 2021, 161, 785-791.	1.3	5
16	Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: Guidance using optical window intravital FRET imaging. Cell Reports, 2021, 36, 109689.	6.4	12
17	Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 2021, 7, eabh0363.	10.3	23
18	BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 2021, 12, 241.	12.8	43

#	Article	IF	CITATIONS
19	Heterogeneity in Pancreatic Cancer Fibroblasts—TGFβ as a Master Regulator?. Cancers, 2021, 13, 4984.	3.7	9
20	Pancreatic Cancer: From Genome Discovery to PRECISION-Panc. Clinical Oncology, 2020, 32, 5-8.	1.4	15
21	Environment Influences Tumor Progression and Transcriptional Subtype in a New Model of Pancreatic Cancer. Cancer Discovery, 2020, 10, 1448-1450.	9.4	3
22	Asymmetrically Substituted Quadruplex-Binding Naphthalene Diimide Showing Potent Activity in Pancreatic Cancer Models. ACS Medicinal Chemistry Letters, 2020, 11, 1634-1644.	2.8	26
23	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Reports, 2020, 31, 107625.	6.4	78
24	Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discovery, 2020, 10, 872-887.	9.4	102
25	Macropinocytosis Renders a Subset of Pancreatic Tumor Cells Resistant to mTOR Inhibition. Cell Reports, 2020, 30, 2729-2742.e4.	6.4	28
26	Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Reports, 2020, 30, 481-496.e6.	6.4	111
27	A Synthetic Lethal Approach to Eradicate AML Via Synergistic Activation of Pro-Apoptotic p53 By MDM2 and BET Inhibitors. Blood, 2020, 136, 14-14.	1.4	0
28	CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nature Communications, 2019, 10, 3637.	12.8	170
29	The integrin $\hat{I}\pm v\hat{I}^26$ drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 2019, 249, 332-342.	4.5	66
30	CAF Subpopulations: A New Reservoir of Stromal Targets in Pancreatic Cancer. Trends in Cancer, 2019, 5, 724-741.	7.4	214
31	Glutamine Anabolism Plays a Critical Role in Pancreatic Cancer by Coupling Carbon and Nitrogen Metabolism. Cell Reports, 2019, 29, 1287-1298.e6.	6.4	105
32	The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 2019, 5, eaaw0254.	10.3	93
33	A Stromal Lysolipid–Autotaxin Signaling Axis Promotes Pancreatic Tumor Progression. Cancer Discovery, 2019, 9, 617-627.	9.4	209
34	Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death and Differentiation, 2019, 26, 2535-2550.	11.2	10
35	Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer. Cell Metabolism, 2019, 29, 1390-1399.e6.	16.2	280
36	Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut, 2019, 68, 742-758.	12.1	68

#	Article	IF	CITATIONS
37	Activation of PP2A and Inhibition of mTOR Synergistically Reduce MYC Signaling and Decrease Tumor Growth in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2019, 79, 209-219.	0.9	56
38	Neutrophils: Homing in on the myeloid mechanisms of metastasis. Molecular Immunology, 2019, 110, 69-76.	2.2	30
39	Increased formate overflow is a hallmark of oxidative cancer. Nature Communications, 2018, 9, 1368.	12.8	90
40	Targeting Multiple Effector Pathways in Pancreatic Ductal Adenocarcinoma with a G-Quadruplex-Binding Small Molecule. Journal of Medicinal Chemistry, 2018, 61, 2500-2517.	6.4	114
41	Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology, 2018, 154, 820-838.	1.3	173
42	CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype. Cell Reports, 2018, 23, 1448-1460.	6.4	169
43	Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 2018, 67, 2142-2155.	12.1	100
44	Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nature Communications, 2018, 9, 5069.	12.8	91
45	MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus. Cell Death and Disease, 2018, 9, 644.	6.3	21
46	Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nature Communications, 2018, 9, 3070.	12.8	64
47	Removing physiological motion from intravital and clinical functional imaging data. ELife, 2018, 7, .	6.0	34
48	Intravital Imaging to Monitor Therapeutic Response in Moving Hypoxic Regions Resistant to PI3K Pathway Targeting in Pancreatic Cancer. Cell Reports, 2018, 23, 3312-3326.	6.4	61
49	Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight, 2018, 3, .	5.0	24
50	The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes and Development, 2017, 31, 172-183.	5.9	471
51	<scp>ROCK</scp> signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Molecular Medicine, 2017, 9, 198-218.	6.9	107
52	PTEN deficiency permits the formation of pancreatic cancer in the absence of autophagy. Cell Death and Differentiation, 2017, 24, 1303-1304.	11.2	23
53	Substrate Rigidity Controls Activation and Durotaxis in Pancreatic Stellate Cells. Scientific Reports, 2017, 7, 2506.	3.3	87
54	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 2017, 9, .	12.4	208

#	Article	IF	CITATIONS
55	SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene, 2017, 36, 4288-4298.	5.9	77
56	Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nature Communications, 2017, 8, 14646.	12.8	42
57	CXCR2 inhibition in pancreatic cancer: opportunities for immunotherapy?. Immunotherapy, 2017, 9, 9-12.	2.0	12
58	A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts. Cell Reports, 2017, 21, 274-288.	6.4	83
59	Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRAS G12D -driven Pancreatic Tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 263-282.	4.5	46
60	MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nature Communications, 2017, 8, 1728.	12.8	83
61	Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis, 2017, 6, e352-e352.	4.9	358
62	Hypermutation In Pancreatic Cancer. Gastroenterology, 2017, 152, 68-74.e2.	1.3	174
63	Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology. Scientific Reports, 2017, 7, 16887.	3.3	22
64	Notch3 drives development and progression of cholangiocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12250-12255.	7.1	68
65	mTORC2 Signaling Drives the Development and Progression of Pancreatic Cancer. Cancer Research, 2016, 76, 6911-6923.	0.9	63
66	CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2016, 29, 832-845.	16.8	645
67	Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue. Cell Reports, 2016, 14, 152-167.	6.4	54
68	Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531, 47-52.	27.8	2,700
69	Inhibition of Tumor Growth and Metastasis in Pancreatic Cancer Models by Interference With CD44v6 Signaling. Gastroenterology, 2016, 150, 513-525.e10.	1.3	78
70	RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. Journal of Clinical Investigation, 2016, 126, 2919-2932.	8.2	93
71	CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. Journal of Pathology, 2015, 237, 85-97.	4.5	59
72	Targeting the <scp>LOX</scp> / <scp>hypoxia</scp> axis reverses many of the features that make pancreatic cancer deadly: inhibition of <scp>LOX</scp> abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 2015, 7, 1063-1076.	6.9	223

#	Article	IF	CITATIONS
73	GEMMs as preclinical models for testing pancreatic cancer therapies. DMM Disease Models and Mechanisms, 2015, 8, 1185-1200.	2.4	92
74	Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest. Cell Reports, 2015, 12, 1483-1496.	6.4	67
75	Functions of TAp63 and p53 in restraining the development of metastatic cancer. Oncogene, 2014, 33, 3325-3333.	5.9	30
76	Targeting mTOR dependency in pancreatic cancer. Gut, 2014, 63, 1481-1489.	12.1	107
77	Monitoring the dynamics of Src activity in response to anti-invasive dasatinib treatment at a subcellular level using dual intravital imaging. Cell Adhesion and Migration, 2014, 8, 478-486.	2.7	7
78	The Rac-FRET Mouse Reveals Tight Spatiotemporal Control of Rac Activity in Primary Cells and Tissues. Cell Reports, 2014, 6, 1153-1164.	6.4	79
79	Fascin Is Regulated by Slug, Promotes Progression of Pancreatic Cancer in Mice, and Is Associated With Patient Outcomes. Gastroenterology, 2014, 146, 1386-1396.e17.	1.3	100
80	Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis, 2014, 35, 1671-1679.	2.8	123
81	BIM Is the Primary Mediator of MYC-Induced Apoptosis in Multiple Solid Tissues. Cell Reports, 2014, 8, 1347-1353.	6.4	64
82	Expression of KOC, S100P, mesothelin and MUC1 in pancreatico-biliary adenocarcinomas: development and utility of a potential diagnostic immunohistochemistry panel. BMC Clinical Pathology, 2014, 14, 35.	1.8	32
83	Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature, 2014, 511, 483-487.	27.8	392
84	Mutant p53–associated myosin-X upregulation promotes breast cancer invasion and metastasis. Journal of Clinical Investigation, 2014, 124, 1069-1082.	8.2	133
85	AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget, 2014, 5, 6142-6167.	1.8	30
86	Activation of the IL-6R/Jak/Stat Pathway is Associated with a Poor Outcome in Resected Pancreatic Ductal Adenocarcinoma. Journal of Gastrointestinal Surgery, 2013, 17, 887-898.	1.7	80
87	p53 status determines the role of autophagy in pancreatic tumour development. Nature, 2013, 504, 296-300.	27.8	614
88	MYCâ€y mice: From tumour initiation to therapeutic targeting of endogenous MYC. Molecular Oncology, 2013, 7, 248-258.	4.6	40
89	A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 2013, 15, 978-990.	10.3	1,566
90	Intravital FLIM-FRET Imaging Reveals Dasatinib-Induced Spatial Control of Src in Pancreatic Cancer. Cancer Research, 2013, 73, 4674-4686.	0.9	111

#	Article	IF	CITATIONS
91	Advanced intravital subcellular imaging reveals vital threeâ€dimensional signalling events driving cancer cell behaviour and drug responses in live tissue. FEBS Journal, 2013, 280, 5177-5197.	4.7	10
92	Dasatinib inhibits mammary tumour development in a genetically engineered mouse model. Journal of Pathology, 2013, 230, 430-440.	4.5	14
93	Exploiting inflammation for therapeutic gain in pancreatic cancer. British Journal of Cancer, 2013, 108, 997-1003.	6.4	73
94	Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene, 2013, 32, 1252-1265.	5.9	162
95	MicroRNA Molecular Profiles Associated with Diagnosis, Clinicopathologic Criteria, and Overall Survival in Patients with Resectable Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2012, 18, 534-545.	7.0	192
96	Rab25 and CLIC3 Collaborate to Promote Integrin Recycling from Late Endosomes/Lysosomes and Drive Cancer Progression. Developmental Cell, 2012, 22, 131-145.	7.0	275
97	The right time, the right place: will targeting human cancer-associated mutations to the mouse provide the perfect preclinical model?. Current Opinion in Genetics and Development, 2012, 22, 28-35.	3.3	5
98	Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nature Cell Biology, 2012, 14, 51-60.	10.3	171
99	Timing Is Everything: Brca2 and p53 Mutations in Pancreatic Cancer. Gastroenterology, 2011, 140, 1143-1146.	1.3	6
100	FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion. Small GTPases, 2011, 2, 239-244.	1.6	25
101	Activation of the PIK3CA/AKT Pathway Suppresses Senescence Induced by an Activated RAS Oncogene to Promote Tumorigenesis. Molecular Cell, 2011, 42, 36-49.	9.7	179
102	P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2011, 2, 555.	12.8	152
103	β-Catenin activation synergizes with PTEN loss to cause bladder cancer formation. Oncogene, 2011, 30, 178-189.	5.9	92
104	Ras, PI3K/Akt and senescence. Small GTPases, 2011, 2, 264-267.	1.6	29
105	A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis. Cell Cycle, 2011, 10, 173-175.	2.6	17
106	Spatial Regulation of RhoA Activity during Pancreatic Cancer Cell Invasion Driven by Mutant p53. Cancer Research, 2011, 71, 747-757.	0.9	127
107	<i>p53</i> mutation and loss have different effects on tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma. Journal of Pathology, 2010, 222, 129-137.	4.5	77
108	Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 246-251.	7.1	530

#	Article	IF	CITATIONS
109	Dasatinib Inhibits the Development of Metastases in a Mouse Model of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2010, 139, 292-303.	1.3	123
110	LKB1 Haploinsufficiency Cooperates With Kras to Promote Pancreatic Cancer Through Suppression of p21-Dependent Growth Arrest. Gastroenterology, 2010, 139, 586-597.e6.	1.3	130
111	Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling. Developmental Cell, 2010, 19, 259-269.	7.0	176
112	The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 2009, 11, 1487-1495.	10.3	1,547
113	Trp53 Deletion Stimulates the Formation of Metastatic Pancreatic Tumors. American Journal of Pathology, 2008, 172, 1081-1087.	3.8	29
114	Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5103-5108.	7.1	211
115	RNA polymerase III transcription is repressed in response to the tumour suppressor ARF. Nucleic Acids Research, 2007, 35, 3046-3052.	14.5	19
116	Shh Signaling and Pancreatic Cancer: Implications for Therapy?. Cell Cycle, 2007, 6, 1553-1557.	2.6	44
117	Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus. Oncogene, 2005, 24, 880-888.	5.9	37
118	p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO Journal, 2003, 22, 2810-2820.	7.8	118
119	CK2 Forms a Stable Complex with TFIIIB and Activates RNA Polymerase III Transcription in Human Cells. Molecular and Cellular Biology, 2002, 22, 3757-3768.	2.3	71
120	Fas-independent apoptosis in T-cell tumours induced by the CD2-myc transgene. Cell Death and Differentiation, 2000, 7, 80-88.	11.2	9