Frank F Flocke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3670057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9, 5785-5812.	1.9	433
2	Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere. Science, 1998, 279, 49-53.	6.0	329
3	Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 3405-3425.	1.9	278
4	Effect of petrochemical industrial emissions of reactive alkenes and NOxon tropospheric ozone formation in Houston, Texas. Journal of Geophysical Research, 2003, 108, .	3.3	263
5	A thermal dissociation–chemical ionization mass spectrometry (TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide. Journal of Geophysical Research, 2004, 109, .	3.3	259
6	Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic. Journal of Geophysical Research, 2000, 105, 3795-3805.	3.3	257
7	Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: spring 2006 INTEX-B campaign overview and first results. Atmospheric Chemistry and Physics, 2009, 9, 2301-2318.	1.9	237
8	Effects of changing power plant NOxemissions on ozone in the eastern United States: Proof of concept. Journal of Geophysical Research, 2006, 111, .	3.3	226
9	Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California. Journal of Geophysical Research, 2004, 109, .	3.3	197
10	Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America. Journal of Geophysical Research, 2006, 111, .	3.3	181
11	Distributions of brominated organic compounds in the troposphere and lower stratosphere. Journal of Geophysical Research, 1999, 104, 21513-21535.	3.3	179
12	A case study of transpacific warm conveyor belt transport: Influence of merging airstreams on trace gas import to North America. Journal of Geophysical Research, 2004, 109, .	3.3	169
13	The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American Meteorological Society, 2015, 96, 1281-1309.	1.7	165
14	Observed OH and HO2in the upper troposphere suggest a major source from convective injection of peroxides. Geophysical Research Letters, 1997, 24, 3181-3184.	1.5	160
15	On the origin of tropospheric ozone and NOxover the tropical South Pacific. Journal of Geophysical Research, 1999, 104, 5829-5843.	3.3	140
16	Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area. Atmospheric Chemistry and Physics, 2010, 10, 2353-2375.	1.9	131
17	Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmospheric Chemistry and Physics, 2009, 9, 3027-3042.	1.9	128
18	Tropospheric hydroxyl and atomic chlorine concentrations, and mixing timescales determined from hydrocarbon and halocarbon measurements made over the Southern Ocean. Journal of Geophysical Research, 1999, 104, 21819-21828.	3.3	122

#	Article	IF	CITATIONS
19	A new interpretation of total column BrO during Arctic spring. Geophysical Research Letters, 2010, 37,	1.5	116
20	Concentrations and sources of organic carbon aerosols in the free troposphere over North America. Journal of Geophysical Research, 2006, 111, .	3.3	111
21	Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOyto a coniferous forest. Journal of Geophysical Research, 2006, 111, .	3.3	107
22	Comparison of MkIV balloon and ER-2 aircraft measurements of atmospheric trace gases. Journal of Geophysical Research, 1999, 104, 26779-26790.	3.3	106
23	High levels of molecular chlorine in the Arctic atmosphere. Nature Geoscience, 2014, 7, 91-94.	5.4	105
24	An investigation of the chemistry of ship emission plumes during ITCT 2002. Journal of Geophysical Research, 2005, 110, .	3.3	103
25	Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. Journal of Geophysical Research, 2007, 112, .	3.3	102
26	First direct measurements of formaldehyde flux via eddy covariance: implications for missing in-canopy formaldehyde sources. Atmospheric Chemistry and Physics, 2011, 11, 10565-10578.	1.9	101
27	Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29469-29477.	3.3	100
28	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 8283-8308.	1.9	99
29	Is the Arctic Surface Layer a Source and Sink of NOx in Winter/Spring?. Journal of Atmospheric Chemistry, 2000, 36, 1-22.	1.4	94
30	Fast-response airborne in situ measurements of HNO3during the Texas 2000 Air Quality Study. Journal of Geophysical Research, 2002, 107, ACH 8-1.	3.3	94
31	Measurements of alkyl nitrates in rural and polluted air masses. Atmospheric Environment Part A General Topics, 1991, 25, 1951-1960.	1.3	89
32	Aircraft measurements of the latitudinal, vertical, and seasonal variations of NMHCs, methyl nitrate, methyl halides, and DMS during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 1999, 104, 21803-21817.	3.3	88
33	Upper tropospheric ozone production from lightning NO <i>_x</i> â€impacted convection: Smoke ingestion case study from the DC3 campaign. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2505-2523.	1.2	88
34	Changes in the photochemical environment of the temperate North Pacific troposphere in response to increased Asian emissions. Journal of Geophysical Research, 2004, 109, .	3.3	86
35	Measurements of bromine containing organic compounds at the tropical tropopause. Geophysical Research Letters, 1998, 25, 317-320.	1.5	84
36	Reactive nitrogen transport and photochemistry in urban plumes over the North Atlantic Ocean. Journal of Geophysical Research, 2006, 111, .	3.3	83

#	Article	IF	CITATIONS
37	Coupled evolution of BrOx-ClOx-HOx-NOxchemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer. Journal of Geophysical Research, 2003, 108, .	3.3	82
38	Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models. Journal of Geophysical Research, 2007, 112, .	3.3	82
39	Latitudinal, vertical, and seasonal variations of C1-C4alkyl nitrates in the troposphere over the Pacific Ocean during PEM-Tropics A and B: Oceanic and continental sources. Journal of Geophysical Research, 2003, 108, .	3.3	80
40	Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring. Journal of Geophysical Research, 2004, 109, .	3.3	80
41	Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean. Journal of Geophysical Research, 2004, 109, .	3.3	80
42	Export of anthropogenic reactive nitrogen and sulfur compounds from the East Asia region in spring. Journal of Geophysical Research, 2003, 108, .	3.3	78
43	Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program. Journal of Geophysical Research, 2003, 108, TOP 4-1.	3.3	75
44	Synoptic-scale transport of reactive nitrogen over the western Pacific in spring. Journal of Geophysical Research, 2003, 108, .	3.3	73
45	Testing fast photochemical theory during TRACE-P based on measurements of OH, HO2, and CH2O. Journal of Geophysical Research, 2004, 109, .	3.3	71
46	Observations of inorganic bromine (HOBr, BrO, and Br ₂) speciation at Barrow, Alaska, in spring 2009. Journal of Geophysical Research, 2012, 117, .	3.3	71
47	Nitrous acid (HONO) during polar spring in Barrow, Alaska: A net source of OH radicals?. Journal of Geophysical Research, 2011, 116, .	3.3	69
48	Ground-based measurements of peroxycarboxylic nitric anhydrides (PANs) during the 1999 Southern Oxidants Study Nashville Intensive. Journal of Geophysical Research, 2002, 107, ACH 1-1-ACH 1-10.	3.3	68
49	On the Measurement of PANs by Gas Chromatography and Electron Capture Detection. Journal of Atmospheric Chemistry, 2005, 52, 19-43.	1.4	68
50	Long-term measurements of alkyl nitrates in southern Germany: 1. General behavior and seasonal and diurnal variation. Journal of Geophysical Research, 1998, 103, 5729-5746.	3.3	66
51	Seasonal variations of C2–C4nonmethane hydrocarbons and C1–C4alkyl nitrates at the Summit research station in Greenland. Journal of Geophysical Research, 2003, 108, .	3.3	64
52	Characterization of a thermal decomposition chemical ionization mass spectrometer for the measurement of peroxy acyl nitrates (PANs) in the atmosphere. Atmospheric Chemistry and Physics, 2011, 11, 6529-6547.	1.9	64
53	Large-scale latitudinal and vertical distributions of NMHCs and selected halocarbons in the troposphere over the Pacific Ocean during the March-April 1999 Pacific Exploratory Mission (PEM-Tropics B). Journal of Geophysical Research, 2001, 106, 32627-32644.	3.3	63
54	Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment. Journal of Geophysical Research, 2004, 109, .	3.3	63

#	Article	IF	CITATIONS
55	Budgets for nocturnal VOC oxidation by nitrate radicals aloft during the 2006 Texas Air Quality Study. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	63
56	An examination of chemistry and transport processes in the tropical lower stratosphere using observations of long-lived and short-lived compounds obtained during STRAT and POLARIS. Journal of Geophysical Research, 1999, 104, 26625-26642.	3.3	62
57	Evaluation of HO _x sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem. Atmospheric Chemistry and Physics, 2013, 13, 2031-2044.	1.9	62
58	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.	1.9	60
59	Ozone, aerosol, potential vorticity, and trace gas trends observed at high-latitudes over North America from February to May 2000. Journal of Geophysical Research, 2003, 108, .	3.3	59
60	Influence of trans-Pacific pollution transport on acyl peroxy nitrate abundances and speciation at Mount Bachelor Observatory during INTEX-B. Atmospheric Chemistry and Physics, 2007, 7, 5309-5325.	1.9	58
61	Steady state free radical budgets and ozone photochemistry during TOPSE. Journal of Geophysical Research, 2003, 108, .	3.3	57
62	Missing peroxy radical sources within a summertime ponderosa pine forest. Atmospheric Chemistry and Physics, 2014, 14, 4715-4732.	1.9	56
63	Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6271-6289.	1.2	56
64	Photochemistry in the arctic free troposphere: NOx budget and the role of odd nitrogen reservoir recycling. Atmospheric Environment, 2003, 37, 3351-3364.	1.9	55
65	Emissions of Trace Organic Gases From Western U.S. Wildfires Based on WEâ€CAN Aircraft Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033838.	1.2	54
66	Reactive nitrogen budget during the NASA SONEX Mission. Geophysical Research Letters, 1999, 26, 3057-3060.	1.5	53
67	Photochemical production and evolution of selected C2–C5alkyl nitrates in tropospheric air influenced by Asian outflow. Journal of Geophysical Research, 2003, 108, .	3.3	53
68	Ozone dynamics and snowâ€atmosphere exchanges during ozone depletion events at Barrow, Alaska. Journal of Geophysical Research, 2012, 117, .	3.3	52
69	Summary of measurement intercomparisons during TRACE-P. Journal of Geophysical Research, 2003, 108, .	3.3	51
70	HONO Emissions from Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke. Environmental Science & Technology, 2020, 54, 5954-5963.	4.6	51
71	The seasonal evolution of NMHCs and light alkyl nitrates at middle to high northern latitudes during TOPSE. Journal of Geophysical Research, 2003, 108, .	3.3	50
72	Springtime photochemistry at northern mid and high latitudes. Journal of Geophysical Research, 2003, 108, .	3.3	49

#	Article	IF	CITATIONS
73	Long-term atmospheric measurements of C1–C5 alkyl nitrates in the Pearl River Delta region of southeast China. Atmospheric Environment, 2006, 40, 1619-1632.	1.9	49
74	Changes in ozone and precursors during two aged wildfire smoke events in the Colorado Front Range in summer 2015. Atmospheric Chemistry and Physics, 2017, 17, 10691-10707.	1.9	49
75	Evaluation of the role of heterogeneous oxidation of alkenes in the detection of atmospheric acetaldehyde. Atmospheric Environment, 2004, 38, 6017-6028.	1.9	48
76	Lagrangian analysis of low altitude anthropogenic plume processing across the North Atlantic. Atmospheric Chemistry and Physics, 2008, 8, 7737-7754.	1.9	48
77	Peroxy radical behavior during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign as measured aboard the NASA P-3B aircraft. Journal of Geophysical Research, 2003, 108, .	3.3	44
78	Late-spring increase of trans-Pacific pollution transport in the upper troposphere. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	43
79	Tropospheric reactive odd nitrogen over the South Pacific in austral springtime. Journal of Geophysical Research, 2000, 105, 6681-6694.	3.3	42
80	Atmospheric Acetaldehyde: Importance of Airâ€5ea Exchange and a Missing Source in the Remote Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.	1.5	41
81	Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032657.	1.2	41
82	Preparation of organic nitrates from alcohols and N2O5 for species identification in atmospheric samples. Journal of Atmospheric Chemistry, 1993, 16, 349-359.	1.4	40
83	The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6075-6093.	1.2	39
84	A biomass burning source of C1-C4alkyl nitrates. Geophysical Research Letters, 2002, 29, 21-1-21-4.	1.5	38
85	Assessing the regional impacts of Mexico City emissions on air quality and chemistry. Atmospheric Chemistry and Physics, 2009, 9, 3731-3743.	1.9	38
86	Fraction and composition of NOytransported in air masses lofted from the North American continental boundary layer. Journal of Geophysical Research, 2004, 109, .	3.3	37
87	Long-Term Measurements of Light Hydrocarbons (C2–C5) at Schauinsland (Black Forest). Journal of Atmospheric Chemistry, 1997, 28, 135-171.	1.4	36
88	Observations of methyl nitrate in the lower stratosphere during STRAT: Implications for its gas phase production mechanisms. Geophysical Research Letters, 1998, 25, 1891-1894.	1.5	36
89	Relationship between photochemical ozone production and NO _x oxidation in Houston, Texas. Journal of Geophysical Research, 2009, 114, .	3.3	36
90	Mercury Emission Ratios from Coal-Fired Power Plants in the Southeastern United States during NOMADSS. Environmental Science & amp; Technology, 2015, 49, 10389-10397.	4.6	36

#	Article	IF	CITATIONS
91	Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033484.	1.2	36
92	Observation and modeling of the evolution of Texas power plant plumes. Atmospheric Chemistry and Physics, 2012, 12, 455-468.	1.9	34
93	Using stable isotopes of hydrogen to quantify biogenic and thermogenic atmospheric methane sources: A case study from the Colorado Front Range. Geophysical Research Letters, 2016, 43, 11,462.	1.5	34
94	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	1.9	34
95	BrO and inferred Br _{<i>y</i>} profiles over the western Pacific: relevance of inorganic bromine sources and a Br _{<i>y</i>} minimum in the aged tropical tropopause laver. Atmospheric Chemistry and Physics. 2017. 17. 15245-15270.	1.9	33
96	Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of Coalâ€Fired Power Plants. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11225-11237.	1.2	33
97	A study of organic nitrates formation in an urban plume using a Master Chemical Mechanism. Atmospheric Environment, 2008, 42, 5771-5786.	1.9	32
98	On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 2019, 19, 9097-9123.	1.9	32
99	Observations of APAN during TexAQS 2000. Geophysical Research Letters, 2001, 28, 4195-4198.	1.5	31
100	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Technology, 2021, 55, 10280-10290.	4.6	31
101	Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska. Atmospheric Chemistry and Physics, 2015, 15, 9651-9679.	1.9	29
102	Wet scavenging of soluble gases in DC3 deep convective storms using WRFâ€Chem simulations and aircraft observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4233-4257.	1.2	29
103	Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7430-7460.	1.2	28
104	Air Quality in the Northern Colorado Front Range Metro Area: The Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031197.	1.2	28
105	Clouds and trace gas distributions during TRACE-P. Journal of Geophysical Research, 2003, 108, .	3.3	27
106	Airborne quantification of upper tropospheric NO <i>_x</i> production from lightning in deep convective storms over the United States Great Plains. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2002-2028.	1.2	25
107	Impacts of the Denver Cyclone on regional air quality and aerosol formation in the Colorado Front Range during FRAPPÉÂ2014. Atmospheric Chemistry and Physics, 2016, 16, 12039-12058.	1.9	24
108	The NO _{<i>x</i>} dependence of bromine chemistry in the Arctic atmospheric boundary layer. Atmospheric Chemistry and Physics, 2015, 15, 10799-10809.	1.9	23

#	Article	IF	CITATIONS
109	Comparison between DC-8 and ER-2 species measurements in the tropical middle troposphere: NO, NOy, O3, CO2, CH4, and N2O. Journal of Geophysical Research, 1998, 103, 22087-22096.	3.3	22
110	Intercontinental transport of pollution manifested in the variability and seasonal trend of springtime O3at northern middle and high latitudes. Journal of Geophysical Research, 2003, 108, .	3.3	22
111	Modeling ozone plumes observed downwind of New York City over the North Atlantic Ocean during the ICARTT field campaign. Atmospheric Chemistry and Physics, 2011, 11, 7375-7397.	1.9	22
112	Using Observations and Sourceâ€Specific Model Tracers to Characterize Pollutant Transport During FRAPPÉ and DISCOVERâ€AQ. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10510-10538.	1.2	22
113	Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	20
114	Organic trace gases of oceanic origin observed at South Pole during ISCAT 2000. Atmospheric Environment, 2004, 38, 5463-5472.	1.9	19
115	Contribution of particulate nitrate to airborne measurements of total reactive nitrogen. Journal of Geophysical Research, 2005, 110, .	3.3	18
116	Higher measured than modeled ozone production at increased NO _{<i>x</i>} levels in the Colorado Front Range. Atmospheric Chemistry and Physics, 2017, 17, 11273-11292.	1.9	18
117	Chemical Characteristics and Ozone Production in the Northern Colorado Front Range. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13397-13419.	1.2	18
118	Observations and Modeling of NO <i>_x</i> Photochemistry and Fate in Fresh Wildfire Plumes. ACS Earth and Space Chemistry, 2021, 5, 2652-2667.	1.2	17
119	Arctic springtime observations of volatile organic compounds during the OASISâ€2009 campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9789-9813.	1.2	16
120	Airborne measurements of BrO and the sum of HOBr and Br ₂ over the Tropical West Pacific from 1 to 15 km during the CONvective TRansport of Active Species in the Tropics (CONTRAST) experiment. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,560.	1.2	16
121	Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035203.	1.2	16
122	Alkyl nitrate measurements during STERAO 1996 and NARE 1997: Intercomparison and survey of results. Journal of Geophysical Research, 2001, 106, 23043-23053.	3.3	15
123	Photochemistry in the Arctic Free Troposphere: Ozone Budget and Its Dependence on Nitrogen Oxides and the Production Rate of Free Radicals. Journal of Atmospheric Chemistry, 2004, 47, 107-138.	1.4	14
124	Observations of Acyl Peroxy Nitrates During the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ). Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,416.	1.2	14
125	Improving regional ozone modeling through systematic evaluation of errors using the aircraft observations during the International Consortium for Atmospheric Research on Transport and Transformation. Journal of Geophysical Research, 2007, 112, .	3.3	13
126	Sources and characteristics of summertime organic aerosol in the Colorado Front Range: perspective from measurements and WRF-Chem modeling. Atmospheric Chemistry and Physics, 2018, 18, 8293-8312.	1.9	13

#	Article	IF	CITATIONS
127	Acyl Peroxy Nitrates Link Oil and Natural Gas Emissions to High Ozone Abundances in the Colorado Front Range During Summer 2015. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2336-2350.	1.2	13
128	Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA. Atmospheric Chemistry and Physics, 2016, 16, 11207-11217.	1.9	12
129	Empirical Insights Into the Fate of Ammonia in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033730.	1.2	12
130	Bromine atom production and chain propagation during springtime Arctic ozone depletion events in Barrow, Alaska. Atmospheric Chemistry and Physics, 2017, 17, 3401-3421.	1.9	11
131	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Technology, 2021, 55, 15646-15657.	4.6	11
132	Impacts of physical parameterization on prediction of ethane concentrations for oil and gas emissions in WRF-Chem. Atmospheric Chemistry and Physics, 2018, 18, 16863-16883.	1.9	10
133	NOypartitioning from measurements of nitrogen and hydrogen radicals in the upper troposphere. Geophysical Research Letters, 1999, 26, 51-54.	1.5	9
134	Using TES retrievals to investigate PAN in North American biomass burning plumes. Atmospheric Chemistry and Physics, 2018, 18, 5639-5653.	1.9	9
135	Evolution of Acyl Peroxynitrates (PANs) in Wildfire Smoke Plumes Detected by the Crossâ€Track Infrared Sounder (CrIS) Over the Western U.S. During Summer 2018. Geophysical Research Letters, 2021, 48, .	1.5	9
136	Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloudâ€Forming Particles. Geophysical Research Letters, 2021, 48, .	1.5	7
137	Spatially Resolved Photochemistry Impacts Emissions Estimates in Fresh Wildfire Plumes. Geophysical Research Letters, 2021, 48, e2021GL095443.	1.5	7
138	The CU Airborne Solar Occultation Flux Instrument: Performance Evaluation during BB-FLUX. ACS Earth and Space Chemistry, 2022, 6, 582-596.	1.2	7
139	Measuring Photodissociation Product Quantum Yields Using Chemical Ionization Mass Spectrometry: A Case Study with Ketones. Journal of Physical Chemistry A, 2021, 125, 6836-6844.	1.1	6
140	The Role of Snow in Controlling Halogen Chemistry and Boundary Layer Oxidation During Arctic Spring: A 1D Modeling Case Study. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
141	Wildfire-driven changes in the abundance of gas-phase pollutants in the city of Boise, ID during summer 2018. Atmospheric Pollution Research, 2022, 13, 101269.	1.8	5
142	Reply to "Comment on â€~Long-term atmospheric measurements of C1–C5 alkyl nitrates in the Pearl River Delta region of southeast China'― Atmospheric Environment, 2007, 41, 7371-7372.	1.9	2