Eric D Maloney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3669408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of Eastern North Pacific Hurricanes by the Madden–Julian Oscillation. Journal of Climate, 2000, 13, 1451-1460.	3.2	429
2	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
3	Modulation of Hurricane Activity in the Gulf of Mexico by the Madden-Julian Oscillation. Science, 2000, 287, 2002-2004.	12.6	340
4	Application of MJO Simulation Diagnostics to Climate Models. Journal of Climate, 2009, 22, 6413-6436.	3.2	331
5	Frictional Moisture Convergence in a Composite Life Cycle of the Madden–Julian Oscillation. Journal of Climate, 1998, 11, 2387-2403.	3.2	315
6	Moisture Modes and the Eastward Propagation of the MJO. Journals of the Atmospheric Sciences, 2013, 70, 187-192.	1.7	307
7	The Moist Static Energy Budget of a Composite Tropical Intraseasonal Oscillation in a Climate Model. Journal of Climate, 2009, 22, 711-729.	3.2	298
8	MJO Simulation Diagnostics. Journal of Climate, 2009, 22, 3006-3030.	3.2	265
9	The Madden–Julian Oscillation, Barotropic Dynamics, and North Pacific Tropical Cyclone Formation. Part I: Observations. Journals of the Atmospheric Sciences, 2001, 58, 2545-2558.	1.7	259
10	North American Climate in CMIP5 Experiments. Part I: Evaluation of Historical Simulations of Continental and Regional Climatology. Journal of Climate, 2013, 26, 9209-9245.	3.2	242
11	An Idealized Semi-Empirical Framework for Modeling the Madden–Julian Oscillation. Journals of the Atmospheric Sciences, 2012, 69, 1691-1705.	1.7	233
12	North American Climate in CMIP5 Experiments: Part III: Assessment of Twenty-First-Century Projections*. Journal of Climate, 2014, 27, 2230-2270.	3.2	231
13	Review of Tropicalâ€Extratropical Teleconnections on Intraseasonal Time Scales. Reviews of Geophysics, 2017, 55, 902-937.	23.0	227
14	Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dynamics, 2006, 27, 573-592.	3.8	180
15	Surface Fluxes and Ocean Coupling in the Tropical Intraseasonal Oscillation. Journal of Climate, 2004, 17, 4368-4386.	3.2	176
16	All-Season Climatology and Variability of Atmospheric River Frequencies over the North Pacific. Journal of Climate, 2016, 29, 4885-4903.	3.2	173
17	The Sensitivity of Intraseasonal Variability in the NCAR CCM3 to Changes in Convective Parameterization. Journal of Climate, 2001, 14, 2015-2034.	3.2	160
18	Cracking the MJO nut. Geophysical Research Letters, 2013, 40, 1223-1230.	4.0	154

#	Article	IF	CITATIONS
19	A Systematic Relationship between Intraseasonal Variability and Mean State Bias in AGCM Simulations. Journal of Climate, 2011, 24, 5506-5520.	3.2	151
20	Intraseasonal moist static energy budget in reanalysis data. Journal of Geophysical Research, 2011, 116, .	3.3	137
21	Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent. Atmospheric Chemistry and Physics, 2012, 12, 2117-2147.	4.9	134
22	MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dynamics, 2017, 49, 4023-4045.	3.8	131
23	The Intraseasonal Oscillation and the Energetics of Summertime Tropical Western North Pacific Synoptic-Scale Disturbances. Journals of the Atmospheric Sciences, 2003, 60, 2153-2168.	1.7	130
24	Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophysical Research Letters, 2000, 27, 1739-1742.	4.0	126
25	North American Climate in CMIP5 Experiments. Part II: Evaluation of Historical Simulations of Intraseasonal to Decadal Variability. Journal of Climate, 2013, 26, 9247-9290.	3.2	124
26	Surface Fluxes and Tropical Intraseasonal Variability: a Reassessment. Journal of Advances in Modeling Earth Systems, 2010, 2, .	3.8	122
27	The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geoscience, 2008, 1, 653-657.	12.9	120
28	The Influence of the Madden–Julian Oscillation on Northern Hemisphere Winter Blocking. Journal of Climate, 2016, 29, 4597-4616.	3.2	116
29	Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. Npj Climate and Atmospheric Science, 2018, 1,	6.8	111
30	Fifty Years of Research on the Maddenâ€Julian Oscillation: Recent Progress, Challenges, and Perspectives. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030911.	3.3	106
31	Fundamental Causes of Propagating and Nonpropagating MJOs in MJOTF/GASS Models. Journal of Climate, 2017, 30, 3743-3769.	3.2	102
32	Intraseasonal Variability in an Aquaplanet General Circulation Model. Journal of Advances in Modeling Earth Systems, 2010, 2, .	3.8	101
33	The Role of Moisture–Convection Feedbacks in Simulating the Madden–Julian Oscillation. Journal of Climate, 2011, 24, 2754-2770.	3.2	100
34	Advancing atmospheric river forecasts into subseasonalâ€ŧoâ€seasonal time scales. Geophysical Research Letters, 2017, 44, 7528-7536.	4.0	98
35	Process-Oriented MJO Simulation Diagnostic: Moisture Sensitivity of Simulated Convection. Journal of Climate, 2014, 27, 5379-5395.	3.2	92
36	Impact of the MJO on the boreal winter extratropical circulation. Geophysical Research Letters, 2014, 41, 6055-6062.	4.0	90

#	Article	IF	CITATIONS
37	Intraseasonal Variability of the West African Monsoon and Atlantic ITCZ. Journal of Climate, 2008, 21, 2898-2918.	3.2	89
38	Madden–Julian Oscillation Pacific Teleconnections: The Impact of the Basic State and MJO Representation in General Circulation Models. Journal of Climate, 2017, 30, 4567-4587.	3.2	85
39	Gross Moist Stability and MJO Simulation Skill in Three Full-Physics GCMs. Journals of the Atmospheric Sciences, 2014, 71, 3327-3349.	1.7	84
40	MJO-Related SST Variations over the Tropical Eastern Pacific during Northern Hemisphere Summer. Journal of Climate, 2002, 15, 675-689.	3.2	78
41	An Assessment of the Sea Surface Temperature Influence on Surface Wind Stress in Numerical Weather Prediction and Climate Models. Journal of Climate, 2006, 19, 2743-2762.	3.2	77
42	The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. Journal of Advances in Modeling Earth Systems, 2014, 6, 420-440.	3.8	73
43	Madden–Julian oscillation changes under anthropogenic warming. Nature Climate Change, 2019, 9, 26-33.	18.8	71
44	Vertically resolved weak temperature gradient analysis of the <scp>M</scp> addenâ€ <scp>J</scp> ulian <scp>O</scp> scillation in <scp>SPâ€CESM</scp> . Journal of Advances in Modeling Earth Systems, 2016, 8, 1586-1619.	3.8	65
45	A Unified Moisture Mode Framework for Seasonality of the Madden–Julian Oscillation. Journal of Climate, 2018, 31, 4215-4224.	3.2	61
46	Atmospheric Mechanisms for MJO Decay Over the Maritime Continent. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5188-5204.	3.3	59
47	Prediction of the Midlatitude Response to Strong Maddenâ€Julian Oscillation Events on S2S Time Scales. Geophysical Research Letters, 2018, 45, 463-470.	4.0	57
48	The Consistency of MJO Teleconnection Patterns: An Explanation Using Linear Rossby Wave Theory. Journal of Climate, 2019, 32, 531-548.	3.2	56
49	Objective Diagnostics and the Madden–Julian Oscillation. Part II: Application to Moist Static Energy and Moisture Budgets. Journal of Climate, 2015, 28, 7786-7808.	3.2	54
50	Tropical Intraseasonal Variability in Version 3 of the GFDL Atmosphere Model. Journal of Climate, 2013, 26, 426-449.	3.2	53
51	Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective. Climate Dynamics, 2018, 50, 129-142.	3.8	52
52	Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11657-11662.	7.1	51
53	Windâ€driven latent heat flux and the intraseasonal oscillation. Geophysical Research Letters, 2008, 35,	4.0	49
54	The Influence of the MJO on Upstream Precursors to African Easterly Waves. Journal of Climate, 2012, 25, 3219-3236.	3.2	49

4

#	Article	IF	CITATIONS
55	The Madden–Julian Oscillation, Barotropic Dynamics, and North Pacific Tropical Cyclone Formation. Part II: Stochastic Barotropic Modeling. Journals of the Atmospheric Sciences, 2001, 58, 2559-2570.	1.7	48
56	Changes in Maddenâ€Julian Oscillation Precipitation and Wind Variance Under Global Warming. Geophysical Research Letters, 2018, 45, 7148-7155.	4.0	45
57	Sensitivity of tropical intraseasonal variability to the pattern of climate warming. Journal of Advances in Modeling Earth Systems, 2013, 5, 32-47.	3.8	44
58	Modulation of atmospheric rivers near Alaska and the U.S. West Coast by northeast Pacific height anomalies. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,751.	3.3	43
59	Satellite and Buoy Observations of Boreal Summer Intraseasonal Variability in the Tropical Northeast Pacific. Monthly Weather Review, 2007, 135, 3-19.	1.4	42
60	Climate change and the <scp>M</scp> addenâ€ <scp>J</scp> ulian <scp>O</scp> scillation: A vertically resolved weak temperature gradient analysis. Journal of Advances in Modeling Earth Systems, 2017, 9, 307-331.	3.8	42
61	Skillful Subseasonal Forecasts of Weekly Tornado and Hail Activity Using the Maddenâ€Julian Oscillation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,661.	3.3	41
62	The Amplification of East Pacific Madden–Julian Oscillation Convection and Wind Anomalies during June–November. Journal of Climate, 2003, 16, 3482-3497.	3.2	40
63	Subseasonal SST Variability in the Tropical Eastern North Pacific during Boreal Summer. Journal of Climate, 2008, 21, 4149-4167.	3.2	40
64	Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Maddenâ€Julian Oscillation. Geophysical Research Letters, 2016, 43, 10,412.	4.0	36
65	Process-Oriented Evaluation of Climate and Weather Forecasting Models. Bulletin of the American Meteorological Society, 2019, 100, 1665-1686.	3.3	36
66	An Intraseasonal Prediction Model of Atlantic and East Pacific Tropical Cyclone Genesis. Monthly Weather Review, 2013, 141, 1925-1942.	1.4	34
67	Interactions between Moisture and Tropical Convection. Part I: The Coevolution of Moisture and Convection. Journals of the Atmospheric Sciences, 2020, 77, 1783-1799.	1.7	33
68	On the Convective Coupling and Moisture Organization of East Pacific Easterly Waves. Journals of the Atmospheric Sciences, 2015, 72, 3850-3870.	1.7	31
69	The Dynamics of the ENSO–Atlantic Hurricane Teleconnection: ENSO-Related Changes to the North African–Asian Jet Affect Atlantic Basin Tropical Cyclogenesis. Journal of Climate, 2009, 22, 2458-2482.	3.2	30
70	Tropical Intraseasonal Modes of the Atmosphere. Annual Review of Environment and Resources, 2014, 39, 189-215.	13.4	29
71	Energetics of East Pacific Easterly Waves during Intraseasonal Events. Journal of Climate, 2014, 27, 7603-7621.	3.2	29
72	The Impact of the Madden–Julian Oscillation on High-Latitude Winter Blocking during El Niño–Southern Oscillation Events. Journal of Climate, 2018, 31, 5293-5318.	3.2	29

#	Article	IF	CITATIONS
73	An Intraseasonal Oscillation Composite Life Cycle in the NCAR CCM3.6 with Modified Convection. Journal of Climate, 2002, 15, 964-982.	3.2	28
74	Analysis of MJO Wind-Flux Feedbacks in the Indian Ocean Using RAMA Buoy Observations. Journal of the Meteorological Society of Japan, 2015, 93A, 1-20.	1.8	28
75	Systematic Errors in Weather and Climate Models: Nature, Origins, and Ways Forward. Bulletin of the American Meteorological Society, 2018, 99, ES67-ES70.	3.3	28
76	Remote Forcing versus Local Feedback of East Pacific Intraseasonal Variability during Boreal Summer. Journal of Climate, 2013, 26, 3575-3596.	3.2	25
77	Role of North Indian Ocean Air–Sea Interaction in Summer Monsoon Intraseasonal Oscillation. Journal of Climate, 2018, 31, 7885-7908.	3.2	24
78	The Global Teleconnection Signature of the Maddenâ€Julian Oscillation and Its Modulation by the Quasiâ€Biennial Oscillation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032653.	3.3	24
79	Interannual Tropical Pacific Sea Surface Temperatures and Their Relation to Preceding Sea Level Pressures in the NCAR CCSM2. Journal of Climate, 2006, 19, 998-1012.	3.2	23
80	Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics: GCM Evaluation. Journals of the Atmospheric Sciences, 2020, 77, 379-403.	1.7	22
81	MJO Teleconnections over the PNA Region in Climate Models. Part II: Impacts of the MJO and Basic State. Journal of Climate, 2020, 33, 5081-5101.	3.2	22
82	Moisture Mode Theory's Contribution to Advances in our Understanding of the Madden-Julian Oscillation and Other Tropical Disturbances. Current Climate Change Reports, 2021, 7, 72-85.	8.6	22
83	Monsoon intraseasonal oscillations as simulated by the superparameterized Community Atmosphere Model. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
84	Large-scale controls of propagation of the Madden-Julian Oscillation. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	21
85	The Consistency of MJO Teleconnection Patterns on Interannual Time Scales. Journal of Climate, 2020, 33, 3471-3486.	3.2	21
86	Intraseasonal variability in the far-east pacific: investigation of the role of air–sea coupling in a regional coupled model. Climate Dynamics, 2011, 36, 867-890.	3.8	20
87	Effect of SST Distribution and Radiative Feedbacks on the Simulation of Intraseasonal Variability in an Aquaplanet GCM. Journal of the Meteorological Society of Japan, 2011, 89, 195-210.	1.8	20
88	Intraseasonal Eastern Pacific Precipitation and SST Variations in a GCM Coupled to a Slab Ocean Model. Journal of Climate, 2002, 15, 2989-3007.	3.2	18
89	A Modeling Study of Summertime East Pacific Wind-Induced Ocean–Atmosphere Exchange in the Intraseasonal Oscillation. Journal of Climate, 2005, 18, 568-584.	3.2	18
90	Process-Oriented Diagnosis of East Pacific Warm Pool Intraseasonal Variability. Journal of Climate, 2014, 27, 6305-6324.	3.2	18

#	Article	IF	CITATIONS
91	Initiation of an intraseasonal oscillation in an aquaplanet general circulation model. Journal of Advances in Modeling Earth Systems, 2015, 7, 1956-1976.	3.8	18
92	Mechanisms for Global Warming Impacts on Madden–Julian Oscillation Precipitation Amplitude. Journal of Climate, 2019, 32, 6961-6975.	3.2	18
93	Intraseasonal Variability of the Diurnal Cycle of Precipitation in the Philippines. Journals of the Atmospheric Sciences, 2019, 76, 3633-3654.	1.7	18
94	Topographic Effects on the Luzon Diurnal Cycle during the BSISO. Journals of the Atmospheric Sciences, 2020, 77, 3-30.	1.7	18
95	Simulations of the Eastern North Pacific Intraseasonal Variability in CMIP5 GCMs. Journal of Climate, 2013, 26, 3489-3510.	3.2	17
96	MJO Teleconnections over the PNA Region in Climate Models. Part I: Performance- and Process-Based Skill Metrics. Journal of Climate, 2020, 33, 1051-1067.	3.2	17
97	In Situ Initiation of East Pacific Easterly Waves in a Regional Model. Journals of the Atmospheric Sciences, 2017, 74, 333-351.	1.7	16
98	Challenges and Opportunities in MJO Studies. Bulletin of the American Meteorological Society, 2017, 98, ES53-ES56.	3.3	16
99	Interactions between Moisture and Tropical Convection. Part II: The Convective Coupling of Equatorial Waves. Journals of the Atmospheric Sciences, 2020, 77, 1801-1819.	1.7	15
100	Consequences of systematic model drift in DYNAMO MJO hindcasts with SP AM and CAM5. Journal of Advances in Modeling Earth Systems, 2015, 7, 1051-1074.	3.8	14
101	Influence of the Madden–Julian Oscillation and Caribbean Low-Level Jet on East Pacific Easterly Wave Dynamics. Journals of the Atmospheric Sciences, 2018, 75, 1121-1141.	1.7	14
102	Transient Response of MJO Precipitation and Circulation to Greenhouse Gas Forcing. Geophysical Research Letters, 2019, 46, 13546-13555.	4.0	14
103	Genesis of an East Pacific Easterly Wave from a Panama Bight MCS: A Case Study Analysis from June 2012. Journals of the Atmospheric Sciences, 2020, 77, 3567-3584.	1.7	14
104	Observations of eastward propagation of atmospheric intraseasonal oscillations from the Pacific to the Atlantic. Journal of Geophysical Research, 2011, 116, .	3.3	13
105	The Intraseasonal Variability of African Easterly Wave Energetics. Journal of Climate, 2014, 27, 6559-6580.	3.2	13
106	Dynamics-oriented diagnostics for the Madden-Julian Oscillation. Journal of Climate, 2018, , .	3.2	12
107	Quasi-biweekly oscillation of the Asian monsoon rainfall in late summer and autumn: different types of structure and propagation. Climate Dynamics, 2019, 53, 6611-6628.	3.8	12
108	Simulation of the Madden-Julian Oscillation Using General Circulation Models. World Scientific Series on Asia-Pacific Weather and Climate, 2017, , 119-130.	0.2	12

#	Article	IF	CITATIONS
109	Skillful All-Season S2S Prediction of U.S. Precipitation Using the MJO and QBO. Weather and Forecasting, 2020, 35, 2179-2198.	1.4	12
110	Idealized Hot Spot Experiments with a General Circulation Model. Journal of Climate, 2007, 20, 908-925.	3.2	11
111	Objective Diagnostics and the Madden–Julian Oscillation. Part I: Methodology. Journal of Climate, 2015, 28, 4127-4140.	3.2	11
112	The Importance of Past MJO Activity in Determining the Future State of the Midlatitude Circulation. Journal of Climate, 2020, 33, 2131-2147.	3.2	10
113	Wind Speed, Surface Flux, and Intraseasonal Convection Coupling From CYGNSS Data. Geophysical Research Letters, 2020, 47, e2020GL090376.	4.0	10
114	Shortcomings in climate model simulations of the ENSO-Atlantic hurricane teleconnection. Climate Dynamics, 2012, 38, 1973-1988.	3.8	7
115	Dr. Yanai's Contributions to the Discovery and Science of the MJO. Meteorological Monographs, 2016, 56, 4.1-4.18.	5.0	7
116	Wind–Flux Feedbacks and Convective Organization during the November 2011 MJO Event in a High-Resolution Model. Journals of the Atmospheric Sciences, 2018, 75, 57-84.	1.7	7
117	Atmospheric Mixed Layer Convergence from Observed MJO Sea Surface Temperature Anomalies. Journal of Climate, 2020, 33, 547-558.	3.2	7
118	Large-Scale State and Evolution of the Atmosphere and Ocean during PISTON 2018. Journal of Climate, 2021, 34, 5017-5035.	3.2	7
119	Changes to the Maddenâ€Julian Oscillation in Coupled and Uncoupled Aquaplanet Simulations With 4xCO ₂ . Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002179.	3.8	6
120	Investigating Recent Changes in MJO Precipitation and Circulation in Multiple Reanalyses. Geophysical Research Letters, 2020, 47, e2020GL090139.	4.0	6
121	Internal Intraseasonal Variability of the West African Monsoon in WRF. Journal of Climate, 2017, 30, 5815-5833.	3.2	5
122	Mapping Large-Scale Climate Variability to Hydrological Extremes: An Application of the Linear Inverse Model to Subseasonal Prediction. Journal of Climate, 2021, 34, 4207-4225.	3.2	5
123	Using Simple, Explainable Neural Networks to Predict the Maddenâ€Julian Oscillation. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	5
124	The Boreal Summer Madden–Julian Oscillation and Moist Convective Morphology over the Maritime Continent. Journals of the Atmospheric Sciences, 2020, 77, 647-667.	1.7	4
125	Easterly Waves in the East Pacific during the OTREC 2019 Field Campaign. Journals of the Atmospheric Sciences, 2021, 78, 4071-4088.	1.7	4
126	Mixed layer modeling in the East Pacific warm pool during 2002. Climate Dynamics, 2012, 38, 2559-2573.	3.8	3

#	Article	IF	CITATIONS
127	The variability of South Korean temperature associated with climate indicators. Theoretical and Applied Climatology, 2019, 138, 469-489.	2.8	3
128	Review: MJO Propagation over the Maritime Continent. World Scientific Series on Asia-Pacific Weather and Climate, 2021, , 261-272.	0.2	2
129	Quasi-Biweekly Extensions of the Monsoon Winds and the Philippines Diurnal Cycle. Monthly Weather Review, 2021, , .	1.4	2
130	Role of the Tropics in Stateâ€Dependent Improvements of US West Coast NOAA Unified Forecast System Precipitation Forecasts. Geophysical Research Letters, 2022, 49, .	4.0	2
131	The Water Cycle across Scales. Bulletin of the American Meteorological Society, 2005, 86, 1743-1746.	3.3	1
132	Effects of the changing heating profile associated with melting layers in a climate model. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 3110-3121.	2.7	1
133	Progress and Status of MJO Simulation in Climate Models and Process-Oriented Diagnostics. World Scientific Series on Asia-Pacific Weather and Climate, 2021, , 315-326.	0.2	1
134	Global Climate Model Simulations of North America. Regional Climate Studies, 2014, , 167-200.	1.2	1