Antonella Cecchettini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3668798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miRNA and long non-coding RNA transcriptional expression in hepatocellular carcinoma cell line-secreted extracellular vesicles. Clinical and Experimental Medicine, 2022, 22, 245-255.	3.6	9
2	Blood M2-like Monocyte Polarization Is Associated with Calcific Plaque Phenotype in Stable Coronary Artery Disease: A Sub-Study of SMARTool Clinical Trial. Biomedicines, 2022, 10, 565.	3.2	2
3	Salivary Proteomics Markers for Preclinical Sjögren's Syndrome: A Pilot Study. Biomolecules, 2022, 12, 738.	4.0	5
4	Characterization of Extracellular Vesicle Cargo in Sjögren's Syndrome through a SWATH-MS Proteomics Approach. International Journal of Molecular Sciences, 2021, 22, 4864.	4.1	13
5	Subcellular Localization of Connexin 26 in Cardiomyocytes and in Cardiomyocyte-Derived Extracellular Vesicles. Molecules, 2021, 26, 6726.	3.8	5
6	Dynamics of interaction and effects of microplastics on planarian tissue regeneration and cellular homeostasis. Aquatic Toxicology, 2020, 218, 105354.	4.0	25
7	Proteomics pipeline for phosphoenrichment and its application on a human melanoma cell model. Talanta, 2020, 220, 121381.	5.5	7
8	Blood Monocyte Phenotype Fingerprint of Stable Coronary Artery Disease: A Cross-Sectional Substudy of SMARTool Clinical Trial. BioMed Research International, 2020, 2020, 1-11.	1.9	9
9	Protein Delivery by Peptide-Based Stealth Liposomes: A Biomolecular Insight into Enzyme Replacement Therapy. Molecular Pharmaceutics, 2020, 17, 4510-4521.	4.6	10
10	The WNT Pathway Is Relevant for the BCR-ABL1-Independent Resistance in Chronic Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 532.	2.8	14
11	Phenotyping multiple subsets in Sjögren's syndrome: a salivary proteomic SWATH-MS approach towards precision medicine. Clinical Proteomics, 2019, 16, 26.	2.1	22
12	MicroRNA-mediated Regulation of Mucin-type O-glycosylation Pathway: A Putative Mechanism of Salivary Gland Dysfunction in SjĶgren Syndrome. Journal of Rheumatology, 2019, 46, 1485-1494.	2.0	8
13	One year in review 2019: Sjögren's syndrome. Clinical and Experimental Rheumatology, 2019, 37 Suppl 118, 3-15.	0.8	16
14	Salivary extracellular vesicles versus whole saliva: new perspectives for the identification of proteomic biomarkers in SjĶgren's syndrome. Clinical and Experimental Rheumatology, 2019, 37 Suppl 118, 240-248.	0.8	8
15	Endothelial progenitor cell secretome delivered by novel polymeric nanoparticles in ischemic hindlimb. International Journal of Pharmaceutics, 2018, 542, 82-89.	5.2	23
16	Integration of Biomechanical and Biological Characterization in the Development of Porous Poly(caprolactone)-Based Membranes for Abdominal Wall Hernia Treatment. International Journal of Polymer Science, 2018, 2018, 1-15.	2.7	3
17	Cross-Linked Enzyme Aggregates as Versatile Tool for Enzyme Delivery: Application to Polymeric Nanoparticles. Bioconjugate Chemistry, 2018, 29, 2225-2231.	3.6	34
18	Hypothesis-free secretome analysis of thoracic aortic aneurysm reinforces the central role of TGF-Î ² cascade in patients with bicuspid aortic valve. Journal of Cardiology, 2017, 69, 570-576.	1.9	16

ANTONELLA CECCHETTINI

#	Article	IF	CITATIONS
19	Medium-term effect of sublingual l -glutathione supplementation on flow-mediated dilation in subjects with cardiovascular risk factors. Nutrition, 2017, 38, 41-47.	2.4	17
20	Lung inflammation after bleomycin treatment in mice: Selection of an accurate normalization strategy for gene expression analysis in an ex-vivo and in-vitro model. International Journal of Biochemistry and Cell Biology, 2017, 88, 145-154.	2.8	9
21	Updates on SjĶgren's syndrome: from proteomics to protein biomarkers. Expert Review of Proteomics, 2017, 14, 491-498.	3.0	22
22	Cystatin S—a candidate biomarker for severity of submandibular gland involvement in Sjögren's syndrome. Rheumatology, 2017, 56, 1031-1038.	1.9	25
23	Biological and proteomic characterization of a composite mesh for abdominal wall hernia treatment: Reference Study. , 2017, 105, 2045-2052.		3
24	Low T3 State Is Correlated with Cardiac Mitochondrial Impairments after Ischemia Reperfusion Injury: Evidence from a Proteomic Approach. International Journal of Molecular Sciences, 2015, 16, 26687-26705.	4.1	15
25	Site-Specific Secretome Map Evidences VSMC-Related Markers of Coronary Atherosclerosis Grade and Extent in the Hypercholesterolemic Swine. Disease Markers, 2015, 2015, 1-12.	1.3	9
26	Inflammatory and Antioxidant Pattern Unbalance in "Clopidogrel-Resistant―Patients during Acute Coronary Syndrome. Mediators of Inflammation, 2015, 2015, 1-12.	3.0	17
27	Inflammation blood and tissue factors of plaque growth in an experimental model evidenced by a systems approach. Frontiers in Genetics, 2014, 5, 70.	2.3	7
28	Characterization of secreted vesicles from vascular smooth muscle cells. Molecular BioSystems, 2014, 10, 1146.	2.9	32
29	Secreted proteins from carotid endarterectomy: an untargeted approach to disclose molecular clues of plaque progression. Journal of Translational Medicine, 2013, 11, 260.	4.4	27
30	Vascular Smooth Muscle Cells activation revealed by quantitative phosphoproteomics analysis. Journal of Integrated OMICS, 2013, 3, .	0.5	0
31	Correlation between vitamin D binding protein expression and angiographic-proven coronary artery disease. Coronary Artery Disease, 2012, 23, 426-431.	0.7	14
32	Innovative Erythrocyte-based Carriers for Gene Delivery in Porcine Vascular Smooth Muscle Cells: Basis for Local Therapy to Prevent Restenosis. Cardiovascular & Hematological Disorders Drug Targets, 2012, 12, 68-75.	0.7	9
33	Proteomics changes in adhesion molecules: a driving force for vascular smooth muscle cell phenotypic switch. Molecular BioSystems, 2012, 8, 1052.	2.9	10
34	Ribozyme-mediated gene knock down strategy to dissect the consequences of PDGF stimulation in vascular smooth muscle cells. BMC Research Notes, 2012, 5, 268.	1.4	3
35	An automated plasma protein fractionation design: high-throughput perspectives for proteomic analysis. BMC Research Notes, 2012, 5, 612.	1.4	4
36	Vascular Smooth-Muscle-Cell Activation. International Review of Cell and Molecular Biology, 2011, 288, 43-99.	3.2	39

ANTONELLA CECCHETTINI

#	Article	IF	CITATIONS
37	A gel-free approach in vascular smooth muscle cell proteome: perspectives for a better insight into activation. Proteome Science, 2010, 8, 15.	1.7	10
38	Hammerhead ribozymes in therapeutic target discovery and validation. Drug Discovery Today, 2009, 14, 776-783.	6.4	23
39	A proteomic approach to the investigation of early events involved in vascular smooth muscle cell activation. Cell and Tissue Research, 2007, 328, 185-195.	2.9	20
40	A proteomic approach to the investigation of early events involved in the activation of vascular smooth muscle cells. Cell and Tissue Research, 2007, 329, 119-128.	2.9	20
41	Resting smooth muscle cells as a model for studying vascular cell activation. Tissue and Cell, 2006, 38, 111-120.	2.2	16
42	Nitric oxide synthase immunoreactivity in the nematode Trichinella britovi. Evidence for nitric oxide production by the parasite. International Journal for Parasitology, 2004, 34, 715-721.	3.1	15
43	Vitellin cleavage products are proteolytically degraded by ubiquitination in stick insect embryos. Micron, 2003, 34, 39-48.	2.2	5
44	Characterization of DeY1, a novel Y-box gene specifically expressed in differentiating male germ cells of planarians. Gene Expression Patterns, 2002, 2, 195-200.	0.8	24
45	Yolk granules are differentially acidified during embryo development in the stick insect Carausius morosus. Cell and Tissue Research, 2001, 305, 433-443.	2.9	24
46	Serosa membrane plays a key role in transferring vitellin polypeptides to the perivitelline fluid in insect embryos. Development Growth and Differentiation, 2001, 43, 725-733.	1.5	4
47	Yolk utilization in stick insects entails the release of vitellin polypeptides into the perivitelline fluid. European Journal of Cell Biology, 2001, 80, 458-465.	3.6	5
48	A fat body derived protein is selectively sulfated in the stick insect ovary by transcytosis through the follicular epithelium. Biology of the Cell, 1998, 90, 183-197.	2.0	9
49	Cells released in vitro from the embryonic yolk sac of the stick insect carausius morosus (BR.) (PHASMATODEA : HETERONEMIIDAE) may include embryonic hemocytes. Arthropod Structure and Development, 1998, 27, 325-331.	0.4	6
50	Confocal scanning laser microscopy of the follicular epithelium in ovarioles of the stick insect Carausius morosus. Cell and Tissue Research, 1998, 293, 551-561.	2.9	8
51	Mono- and polyclonal antibodies as probes to study vitellin processing in embryos of the stick insect Carausius morosus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 120, 625-631.	1.6	10
52	Native vitellins are modified during ovarian development in the stick insectCarausius morosus (Br.). , 1997, 36, 335-348.		7
53	Defective Natural Killer Cell Cytotoxic Activity in Feline Immunodeficiency Virus-Infected Cats. AIDS Research and Human Retroviruses, 1995, 11, 747-752.	1.1	10
54	Vitellogenesis in the allatectomized stick insect Carausius morosus (br.) (Phasmatodea: Lonchodinae). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 110, 255-266.	1.6	11

#	Article	IF	CITATIONS
55	A Fat Body-Derived Protein Is Selectively Sulfated during Transit to Ovarian Follicles in the Stick Insect Carausius morosus. Developmental Biology, 1995, 167, 379-387.	2.0	7
56	On the occurrence of proteolytic activities in ovarian follicles of the stick insect <i>Carausius morosus</i> (Br.). Bollettino Di Zoologia, 1994, 61, 295-300.	0.3	0
57	Postendocytic vitellin processing in ovarian follicles of the stick insectCarausius morosus (Br.). Archives of Insect Biochemistry and Physiology, 1993, 24, 93-111.	1.5	16
58	Oocyte growth, follicle cell differentiation and vitellin processing in the stick insect, Carausius morosus br. (Phasmatodea). Arthropod Structure and Development, 1993, 22, 271-293.	0.4	17