Nina Vogt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3668740/publications.pdf

Version: 2024-02-01

949033 759306 123 659 11 22 citations h-index g-index papers 146 146 146 1109 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neuroscience goes viral. Nature Methods, 2022, 19, 28-28.	9.0	О
2	Flexibility in mesoscopic imaging. Nature Methods, 2022, 19, 32-32.	9.0	0
3	Calcium imaging in the NIR. Nature Methods, 2021, 18, 32-32.	9.0	1
4	Automated behavioral analysis. Nature Methods, 2021, 18, 29-29.	9.0	6
5	Real-time behavioral analysis. Nature Methods, 2021, 18, 123-123.	9.0	1
6	Super-resolution 3D live cell imaging. Nature Methods, 2021, 18, 232-232.	9.0	2
7	High-resolution optical tweezers. Nature Methods, 2021, 18, 333-333.	9.0	4
8	Studying divergence in human–chimp hybrid cells. Nature Methods, 2021, 18, 444-444.	9.0	1
9	Cell–cell interactions revealed with RABID-seq. Nature Methods, 2021, 18, 593-593.	9.0	O
10	Optogenetic silencing at synaptic terminals. Nature Methods, 2021, 18, 712-712.	9.0	0
11	Atomic force microscopy in super-resolution. Nature Methods, 2021, 18, 859-859.	9.0	7
12	Assembloids. Nature Methods, 2021, 18, 27-27.	9.0	43
13	Spike inference with CASCADE. Nature Methods, 2021, 18, 1147-1147.	9.0	1
14	DELIVERing transgenes into muscle. Nature Methods, 2021, 18, 1275-1275.	9.0	0
15	Optogenetic inhibition. Nature Methods, 2020, 17, 29-29.	9.0	2
16	Primate post-implantation development in a dish. Nature Methods, 2020, 17, 29-29.	9.0	0
17	Collaborative neuroscience. Nature Methods, 2020, 17, 22-22.	9.0	2
18	Putting on the squeeze. Nature Methods, 2020, 17, 24-24.	9.0	3

#	Article	IF	Citations
19	RAMPing up voltage indicator imaging. Nature Methods, 2020, 17, 25-25.	9.0	O
20	Volumetric imaging with confocal light field microscopy. Nature Methods, 2020, 17, 956-956.	9.0	0
21	Benchmarked spike sorting. Nature Methods, 2020, 17, 656-656.	9.0	0
22	Electrical functional imaging. Nature Methods, 2020, 17, 1176-1176.	9.0	0
23	Trapping fluorescence in the soma. Nature Methods, 2020, 17, 761-761.	9.0	0
24	X-ray connectomics. Nature Methods, 2020, 17, 1072-1072.	9.0	2
25	Connectomics in high throughput. Nature Methods, 2020, 17, 873-873.	9.0	0
26	A comparative atlas of the brain. Nature Methods, 2020, 17, 462-462.	9.0	0
27	Mapping spatial diversity. Nature Methods, 2020, 17, 461-461.	9.0	2
28	Optimized tissue clearing. Nature Methods, 2020, 17, 564-564.	9.0	0
29	Watching embryos develop. Nature Methods, 2020, 17, 560-560.	9.0	0
30	A photoswitch for modulating neuronal activity. Nature Methods, 2020, 17, 364-364.	9.0	0
31	Beware the unexpected in Cre drivers. Nature Methods, 2020, 17, 364-364.	9.0	1
32	A detailed marmoset brain atlas. Nature Methods, 2020, 17, 251-251.	9.0	3
33	Photoacoustics in a snap. Nature Methods, 2020, 17, 248-248.	9.0	1
34	A multiplexable miniscope. Nature Methods, 2020, 17, 252-252.	9.0	0
35	The mouse reference brain in 3D. Nature Methods, 2020, 17, 655-655.	9.0	2
36	lt's a material world. Nature Methods, 2020, 17, 458-458.	9.0	0

#	Article	IF	CITATIONS
37	Finding exciting inputs. Nature Methods, 2020, 17, 30-30.	9.0	O
38	Human embryogenesis in a dish. Nature Methods, 2020, 17, 125-125.	9.0	3
39	Venomous organoids. Nature Methods, 2020, 17, 360-360.	9.0	1
40	A brain observatory. Nature Methods, 2020, 17, 129-129.	9.0	4
41	hPSCs on a diet. Nature Methods, 2019, 16, 679-679.	9.0	0
42	A deeply learned brain atlas. Nature Methods, 2019, 16, 680-680.	9.0	0
43	Optogenetics turns up the heat. Nature Methods, 2019, 16, 681-681.	9.0	2
44	Voltage imaging in vivo. Nature Methods, 2019, 16, 573-573.	9.0	2
45	Zapalog: a reversible dimerizer. Nature Methods, 2019, 16, 577-577.	9.0	0
46	Stem cells with potential. Nature Methods, 2019, 16, 578-578.	9.0	0
47	Looking at xenografts in zebrafish. Nature Methods, 2019, 16, 578-578.	9.0	0
48	Massively parallel intracellular recordings. Nature Methods, 2019, 16, 1079-1079.	9.0	3
49	A bright future for voltage imaging. Nature Methods, 2019, 16, 1076-1076.	9.0	3
50	A large-scale, high-resolution microscope. Nature Methods, 2019, 16, 806-806.	9.0	0
51	Targeting neurons synthetically. Nature Methods, 2019, 16, 805-805.	9.0	0
52	Looking at Hydra cells one at a time. Nature Methods, 2019, 16, 801-801.	9.0	0
53	Tracing neurons made easy. Nature Methods, 2019, 16, 957-957.	9.0	0
54	Making limb-like structures from mouse PSCs. Nature Methods, 2019, 16, 957-957.	9.0	0

#	Article	IF	CITATIONS
55	Non-invasive and fast control of neural activity. Nature Methods, 2019, 16, 954-954.	9.0	1
56	Unbiased, whole-brain imaging of neural circuits. Nature Methods, 2019, 16, 142-142.	9.0	0
57	Large-scale electrophysiology with polymer-based electrodes. Nature Methods, 2019, 16, 143-143.	9.0	0
58	Organoids that model the fetal placenta. Nature Methods, 2019, 16, 144-144.	9.0	3
59	Neuron segmentation with deep learning. Nature Methods, 2019, 16, 460-460.	9.0	1
60	Hybrid volumetric calcium imaging. Nature Methods, 2019, 16, 461-461.	9.0	1
61	Chromatic multiphoton imaging of the whole brain. Nature Methods, 2019, 16, 459-459.	9.0	1
62	Potent chemogenetics. Nature Methods, 2019, 16, 363-363.	9.0	3
63	Optoacoustic imaging of neural activity. Nature Methods, 2019, 16, 362-362.	9.0	O
64	Sensing norepinephrine. Nature Methods, 2019, 16, 362-362.	9.0	0
65	Sensing neurotransmitters. Nature Methods, 2019, 16, 17-17.	9.0	14
66	Mapping the marmoset brain. Nature Methods, 2019, 16, 285-285.	9.0	0
67	Dissecting neuronal circuitry. Nature Methods, 2019, 16, 282-282.	9.0	1
68	Multifunctional miniature microscopy. Nature Methods, 2019, 16, 218-218.	9.0	0
69	Imaging the mouse as a whole. Nature Methods, 2019, 16, 213-213.	9.0	1
70	A light-dependent Flp recombinase. Nature Methods, 2019, 16, 217-217.	9.0	0
71	Detecting intracellular PPIs with CLEM. Nature Methods, 2019, 16, 1205-1205.	9.0	0
72	Super-resolution Raman imaging. Nature Methods, 2019, 16, 1202-1202.	9.0	3

#	Article	IF	CITATIONS
73	Pose estimation with deep learning. Nature Methods, 2019, 16, 1205-1205.	9.0	O
74	Highlighting active neurons. Nature Methods, 2019, 16, 25-25.	9.0	0
75	Two-component optogenetic inhibition. Nature Methods, 2019, 16, 26-26.	9.0	1
76	Transformative electrophysiology. Nature Methods, 2018, 15, 31-31.	9.0	4
77	Machine learning in neuroscience. Nature Methods, 2018, 15, 33-33.	9.0	26
78	Modeling temperature during optogenetic illumination. Nature Methods, 2018, 15, 763-763.	9.0	0
79	Raising the game in image classification. Nature Methods, 2018, 15, 759-759.	9.0	3
80	Shaking up clearing cocktails. Nature Methods, 2018, 15, 859-859.	9.0	0
81	Detecting acetylcholine. Nature Methods, 2018, 15, 648-648.	9.0	4
82	The whole fly brain in detail. Nature Methods, 2018, 15, 651-651.	9.0	0
83	Expansion of the transgenic toolkit in mouse. Nature Methods, 2018, 15, 651-651.	9.0	O
84	Analyzing Drosophila activity. Nature Methods, 2018, 15, 407-407.	9.0	0
85	Correlating behavior and neural activity at high resolution. Nature Methods, 2018, 15, 479-479.	9.0	2
86	Inferring neuronal activity from gene expression. Nature Methods, 2018, 15, 481-481.	9.0	0
87	Speedy optogenetics in red. Nature Methods, 2018, 15, 482-482.	9.0	0
88	Delighting in dopamine. Nature Methods, 2018, 15, 573-573.	9.0	0
89	Improving retrograde labeling of neurons. Nature Methods, 2018, 15, 571-571.	9.0	0
90	Simulating the imaging process in scattering tissue. Nature Methods, 2018, 15, 406-406.	9.0	2

#	Article	IF	Citations
91	Faster brain imaging. Nature Methods, 2017, 14, 34-34.	9.0	15
92	Customizing cell-cell communication. Nature Methods, 2016, 13, 285-285.	9.0	2
93	Sensing some tension. Nature Methods, 2016, 13, 17-17.	9.0	0
94	Taking a stab at neuronal heterogeneity. Nature Methods, 2016, 13, 114-114.	9.0	1
95	Monitoring 3D neural activity at large scale. Nature Methods, 2016, 13, 195-195.	9.0	1
96	Precision optogenetics. Nature Methods, 2016, 13, 34-34.	9.0	2
97	Fast volumetric imaging in live samples. Nature Methods, 2015, 12, 170-170.	9.0	0
98	Synapses seen at different scales. Nature Methods, 2015, 12, 485-485.	9.0	0
99	fMRI goes individual. Nature Methods, 2015, 12, 1112-1112.	9.0	6
100	Imaging at depth. Nature Methods, 2015, 12, 38-38.	9.0	0
101	Transparency in large tissue samples. Nature Methods, 2015, 12, 11-11.	9.0	5
102	All-optical electrophysiology in behaving animals. Nature Methods, 2015, 12, 101-101.	9.0	5
103	In vivo voltage sensors. Nature Methods, 2015, 12, 36-36.	9.0	0
104	Chemogenetic manipulation of neurons. Nature Methods, 2015, 12, 603-603.	9.0	0
105	Neurons pick up the heat. Nature Methods, 2015, 12, 390-390.	9.0	0
106	A snapshot of active neurons. Nature Methods, 2015, 12, 283-283.	9.0	0
107	Voltage sensors: challenging, but with potential. Nature Methods, 2015, 12, 921-924.	9.0	21
108	A digital piece of brain. Nature Methods, 2015, 12, 905-905.	9.0	0

#	Article	IF	CITATIONS
109	Pressuring neurons into action. Nature Methods, 2015, 12, 1008-1008.	9.0	1
110	Algae are the best engineers of optogenetic inhibitors. Nature Methods, 2015, 12, 806-807.	9.0	3
111	Light microscopy with lattices. Nature Methods, 2014, 11, 1191-1191.	9.0	1
112	Voltage sensors revisited. Nature Methods, 2014, 11, 1088-1088.	9.0	0
113	A windowless peek into the brain. Nature Methods, 2014, 11, 988-988.	9.0	6
114	Etching away at the surface. Nature Methods, 2014, 11, 790-790.	9.0	0
115	The glucosyltransferase Xiantuan of the endoplasmic reticulum specifically affects E-Cadherin expression and is required for gastrulation movements in Drosophila. Developmental Biology, 2014, 390, 208-220.	0.9	15
116	Number of Nuclear Divisions in the Drosophila Blastoderm Controlled by Onset of Zygotic Transcription. Current Biology, 2013, 23, 133-138.	1.8	50
117	The conserved kinase SRPK regulates karyosome formation and spindle microtubule assembly in <i>Drosophila</i>	1.2	25
118	Interlocked Feedforward Loops Control Cell-Type-Specific Rhodopsin Expression in the Drosophila Eye. Cell, 2011, 145, 956-968.	13.5	78
119	Feedback from rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors. Nature, 2011, 479, 108-112.	13.7	48
120	Flipping the Light Switch. Science, 2010, 330, 454-455.	6.0	2
121	The First Steps in Drosophila Motion Detection. Neuron, 2007, 56, 5-7.	3.8	8
122	Developmental Control of Nuclear Size and Shape by kugelkern and kurzkern. Current Biology, 2006, 16, 543-552.	1.8	109
123	The γTuRC components Grip75 and Grip128 have an essential microtubule-anchoring function in the Drosophila germline. Development (Cambridge), 2006, 133, 3963-3972.	1.2	57