
Enming Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3668733/publications.pdf Version: 2024-02-01

ENMINE SONE

#	Article	IF	CITATIONS
1	Stretchable Sweatâ€Activated Battery in Skinâ€Integrated Electronics for Continuous Wireless Sweat Monitoring. Advanced Science, 2022, 9, e2104635.	11.2	29
2	Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. Nano Letters, 2022, 22, 3447-3456.	9.1	19
3	Recent advances in microsystem approaches for mechanical characterization of soft biological tissues. Microsystems and Nanoengineering, 2022, 8, .	7.0	6
4	Implantable Electronic Medicine Enabled by Bioresorbable Microneedles for Wireless Electrotherapy and Drug Delivery. Nano Letters, 2022, 22, 5944-5953.	9.1	36
5	Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nature Biomedical Engineering, 2021, 5, 759-771.	22.5	65
6	Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures. BME Frontiers, 2021, 2021, .	4.5	7
7	Ultrathin, High Capacitance Capping Layers for Silicon Electronics with Conductive Interconnects in Flexible, Longâ€Lived Bioimplants. Advanced Materials Technologies, 2020, 5, 1900800.	5.8	17
8	Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nature Biomedical Engineering, 2020, 4, 997-1009.	22.5	175
9	Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Science Advances, 2020, 6, eaaz6511.	10.3	24
10	Materials for flexible bioelectronic systems as chronic neural interfaces. Nature Materials, 2020, 19, 590-603.	27.5	277
11	Emerging Modalities and Implantable Technologies for Neuromodulation. Cell, 2020, 181, 115-135.	28.9	152
12	Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics. ACS Nano, 2019, 13, 11572-11581.	14.6	101
13	Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15398-15406.	7.1	66
14	Barrier materials for flexible bioelectronic implants with chronic stability—Current approaches and future directions. APL Materials, 2019, 7, 050902.	5.1	27
15	Thicknessâ€Dependent Electronic Transport in Ultrathin, Single Crystalline Silicon Nanomembranes. Advanced Electronic Materials, 2019, 5, 1900232.	5.1	10
16	Transferred, Ultrathin Oxide Bilayers as Biofluid Barriers for Flexible Electronic Implants. Advanced Functional Materials, 2018, 28, 1702284.	14.9	49
17	Transient Electronics: Highâ€Temperatureâ€Triggered Thermally Degradable Electronics Based on Flexible Silicon Nanomembranes (Adv. Funct. Mater. 45/2018). Advanced Functional Materials, 2018, 28, 1870323.	14.9	3
18	Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible Bioelectronic Systems. ACS Nano, 2018, 12, 10317-10326.	14.6	57

ENMING SONG

#	Article	IF	CITATIONS
19	Flexible Transient Phototransistors by Use of Waferâ€Compatible Transferred Silicon Nanomembranes. Small, 2018, 14, e1802985.	10.0	17
20	Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9542-E9549.	7.1	50
21	Highâ€Temperatureâ€Triggered Thermally Degradable Electronics Based on Flexible Silicon Nanomembranes. Advanced Functional Materials, 2018, 28, 1801448.	14.9	34
22	Recent Advances in Materials, Devices, and Systems for Neural Interfaces. Advanced Materials, 2018, 30, e1800534.	21.0	148
23	Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nature Biomedical Engineering, 2017, 1, .	22.5	210
24	Bendable Photodetector on Fibers Wrapped with Flexible Ultrathin Single Crystalline Silicon Nanomembranes. ACS Applied Materials & Interfaces, 2017, 9, 12171-12175.	8.0	34
25	Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics. ACS Nano, 2017, 11, 12562-12572.	14.6	82
26	Kinetics and Chemistry of Hydrolysis of Ultrathin, Thermally Grown Layers of Silicon Oxide as Biofluid Barriers in Flexible Electronic Systems. ACS Applied Materials & Interfaces, 2017, 9, 42633-42638.	8.0	45
27	Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems. Advanced Electronic Materials, 2017, 3, 1700077.	5.1	61
28	Stability of MOSFET-Based Electronic Components in Wearable and Implantable Systems. IEEE Transactions on Electron Devices, 2017, 64, 3443-3451.	3.0	16
29	Materials and processing approaches for foundry-compatible transient electronics. Proceedings of the United States of America, 2017, 114, E5522-E5529.	7.1	93
30	Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11682-11687.	7.1	175
31	Schottky contact on ultra-thin silicon nanomembranes under light illumination. Nanotechnology, 2014, 25, 485201.	2.6	12