Miryana Hémadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3668715/publications.pdf

Version: 2024-02-01

42 papers

1,727 citations

304743 22 h-index 289244 40 g-index

43 all docs

43 docs citations

times ranked

43

2740 citing authors

#	Article	IF	CITATIONS
1	Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nature Reviews Immunology, 2020, 20, 515-516.	22.7	430
2	Cyanobacteria as Bioreactors for the Synthesis of Au, Ag, Pd, and Pt Nanoparticles via an Enzyme-Mediated Route. Journal of Nanoscience and Nanotechnology, 2007, 7, 2696-2708.	0.9	197
3	Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4044-4053.	7.1	98
4	Nano-gold biosynthesis by silica-encapsulated micro-algae: a "living―bio-hybrid material. Journal of Materials Chemistry, 2010, 20, 9342.	6.7	85
5	Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 334-347.	2.4	70
6	Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles. Small, 2017, 13, 1602030.	10.0	69
7	Aluminum Exchange between Citrate and Human Serum Transferrin and Interaction with Transferrin Receptor 1. Biochemistry, 2003, 42, 3120-3130.	2.5	60
8	Transferrin's Mechanism of Interaction with Receptor 1. Biochemistry, 2004, 43, 1736-1745.	2.5	53
9	Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells?. Materials Today Nano, 2020, 11, 100084.	4.6	44
10	Recent advances in nanotechnology for eradicating bacterial biofilm. Theranostics, 2022, 12, 2383-2405.	10.0	43
11	Iron uptake and transfer from ceruloplasmin to transferrin. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1771-1781.	2.4	42
12	TRAIL–NP hybrids for cancer therapy: a review. Nanoscale, 2017, 9, 5755-5768.	5.6	37
13	Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: succinyl-l ² -cyclodextrin-APTES@maghemite nanoparticles. Environmental Science: Nano, 2018, 5, 158-168.	4.3	37
14	Mechanism of Formation of the Complex between Transferrin and Bismuth, and Interaction with Transferrin Receptor 1. Biochemistry, 2004, 43, 14722-14731.	2.5	34
15	The Mechanism of Iron Release from the Transferrin-Receptor 1 Adduct. Journal of Molecular Biology, 2006, 358, 1125-1136.	4.2	33
16	Polyol-synthesized Zn0.9Mn0.1S nanoparticles as potential luminescent and magnetic bimodal imaging probes: synthesis, characterization, and toxicity study. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	32
17	Cobalt and the Iron Acquisition Pathway: Competition towards Interaction with Receptor 1. Journal of Molecular Biology, 2008, 380, 900-916.	4.2	27
18	Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia. Nanoscale Advances, 2019, 1, 2571-2579.	4.6	25

#	Article	IF	CITATIONS
19	Biomimetic Growth of Silica Tubes in Confined Media. Langmuir, 2006, 22, 9092-9095.	3.5	24
20	Can uranium follow the iron-acquisition pathway? Interaction of uranyl-loaded transferrin with receptor 1. Journal of Biological Inorganic Chemistry, 2010, 15, 497-504.	2.6	24
21	Transferrin receptor-1 iron-acquisition pathway â€" Synthesis, kinetics, thermodynamics and rapid cellular internalization of a holotransferrinâ€"maghemite nanoparticle construct. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4254-4264.	2.4	24
22	Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin. Scientific Reports, 2017, 7, 40075.	3.3	24
23	Kinetics and thermodynamics of metal-loaded transferrins: transferrin receptor 1 interactions. Biochemical Society Transactions, 2008, 36, 1422-1426.	3.4	21
24	New sensitive and selective calixarene-based fluorescent sensors for the detection of Cs ⁺ in an organoaqueous medium. New Journal of Chemistry, 2017, 41, 7162-7170.	2.8	21
25	In Vitro Interaction between Ceruloplasmin and Human Serum Transferrin. Biochemistry, 2010, 49, 10261-10263.	2.5	20
26	Maghemite nanoparticles coated with human serum albumin: combining targeting by the iron-acquisition pathway and potential in photothermal therapies. Journal of Materials Chemistry B, 2017, 5, 3154-3162.	5.8	18
27	Transferrin-bearing maghemite nano-constructs for biomedical applications. Journal of Applied Physics, 2015, 117, 17A336.	2.5	16
28	TRAIL acts synergistically with iron oxide nanocluster-mediated magneto- and photothermia. Theranostics, 2019, 9, 5924-5936.	10.0	14
29	Functionalization of Iron Oxide Nanoparticles With HSA Protein for Thermal Therapy. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	12
30	Can Uranium Be Transported by the Iron-Acquisition Pathway? Ur Uptake by Transferrin. Journal of Physical Chemistry B, 2011, 115, 4206-4215.	2.6	11
31	Synthesis of bis(amidoxime)s and evaluation of their properties as uranyl-complexing agents. Tetrahedron, 2018, 74, 2641-2649.	1.9	11
32	A new series of Cs+, K+ and Na+ chelators: Synthesis, kinetics, thermodynamics and modeling. Inorganica Chimica Acta, 2013, 394, 45-57.	2.4	9
33	Synthesis and evaluation of 3-acyltetronic acid-containing metal complexing agents. Tetrahedron, 2013, 69, 10842-10848.	1.9	8
34	Design and synthesis of 3-isoxazolidone derivatives as new Chlamydia trachomatis inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3854-3860.	2.2	7
35	Maghemite nanoparticles bearing di(amidoxime) groups for the extraction of uranium from wastewaters. AIP Advances, 2017, 7, .	1.3	7
36	Coupling tumor necrosis factorâ€related apoptosisâ€inducing ligand to iron oxide nanoparticles increases its apoptotic activity on HCT116 and HepG2 malignant cells: effect of magnetic core size. Journal of Interdisciplinary Nanomedicine, 2019, 4, 34-50.	3.6	7

#	Article	IF	CITATIONS
37	Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway. PLoS ONE, 2016, 11, e0150031.	2.5	7
38	New Iron Oxide Nanoparticles Catechol-Grafted with Bis(amidoxime)s for Uranium(VI) Depletion of Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2019, 19, 4911-4919.	0.9	6
39	Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium. AIP Advances, 2016, 6, .	1.3	4
40	Grafting TRAIL through Either Amino or Carboxylic Groups onto Maghemite Nanoparticles: Influence on Pro-Apoptotic Efficiency. Nanomaterials, 2021, 11, 502.	4.1	3
41	Supramolecular organization and biological interaction of squalenoyl siRNA nanoparticles. International Journal of Pharmaceutics, 2021, 609, 121117.	5.2	3
42	Gallium Uptake and Transport by Transferrin. , 2013, , 812-818.		0