
Mai Bui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3668427/publications.pdf Version: 2024-02-01

MAL RUL

#	Article	IF	CITATIONS
1	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	15.6	2,378
2	Dynamic modelling and optimisation of flexible operation in post-combustion CO2 capture plants—A review. Computers and Chemical Engineering, 2014, 61, 245-265.	2.0	126
3	Exploring the limits of adsorption-based CO ₂ capture using MOFs with PVSA – from molecular design to process economics. Molecular Systems Design and Engineering, 2020, 5, 212-231.	1.7	82
4	Beyond 90% capture: Possible, but at what cost?. International Journal of Greenhouse Gas Control, 2021, 105, 103239.	2.3	74
5	Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction. Applied Energy, 2017, 195, 289-302.	5.1	73
6	Bio-energy with carbon capture and storage (BECCS): Opportunities for performance improvement. Fuel, 2018, 213, 164-175.	3.4	51
7	Flexible operation of CSIRO's post-combustion CO2 capture pilot plant at the AGL Loy Yang power station. International Journal of Greenhouse Gas Control, 2016, 48, 188-203.	2.3	47
8	Dynamic operation and modelling of amine-based CO2 capture at pilot scale. International Journal of Greenhouse Gas Control, 2018, 79, 134-153.	2.3	37
9	En Route to Zero Emissions for Power and Industry with Amine-Based Post-combustion Capture. Environmental Science & Technology, 2021, 55, 10619-10632.	4.6	36
10	Does CCS reduce power generation flexibility? A dynamic study of combined cycles with post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2020, 95, 102984.	2.3	33
11	Delivering carbon negative electricity, heat and hydrogen with BECCS – Comparing the options. International Journal of Hydrogen Energy, 2021, 46, 15298-15321.	3.8	26
12	CO2 mitigation or removal: The optimal uses of biomass in energy system decarbonization. IScience, 2021, 24, 102765.	1.9	26
13	Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO2 capture plant. International Journal of Greenhouse Gas Control, 2020, 93, 102879.	2.3	25
14	A synergistic approach for the simultaneous decarbonisation of power and industry via bioenergy with carbon capture and storage (BECCS). International Journal of Greenhouse Gas Control, 2019, 87, 221-237.	2.3	22
15	Unlocking the potential of BECCS with indigenous sources of biomass at a national scale. Sustainable Energy and Fuels, 2020, 4, 226-253.	2.5	21
16	Dynamic Operation of Post-combustion CO2 Capture in Australian Coal-fired Power Plants. Energy Procedia, 2014, 63, 1368-1375.	1.8	13
17	Grid-scale energy storage with net-zero emissions: comparing the options. Sustainable Energy and Fuels, 2019, 3, 3147-3162.	2.5	13
18	A Pathway Towards Net-Zero Emissions in Oil Refineries. Frontiers in Chemical Engineering, 2022, 4, .	1.3	13

Mai Bui

#	Article	IF	CITATIONS
19	Dynamic Modeling and Validation of Post-combustion CO2 Capture Plants in Australian Coal-fired Power Stations. Energy Procedia, 2013, 37, 2694-2702.	1.8	11
20	Thermodynamic Evaluation of Carbon Negative Power Generation: Bio-energy CCS (BECCS). Energy Procedia, 2017, 114, 6010-6020.	1.8	8
21	Hydrogen Production and Its Applications to Mobility. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 501-528.	3.3	7
22	Editorial: The Role of Carbon Capture and Storage Technologies in a Net-Zero Carbon Future. Frontiers in Energy Research, 2021, 9, .	1.2	4
23	Chapter 1. Introduction – Carbon Capture and Storage. RSC Energy and Environment Series, 2019, , 1-7.	0.2	1
24	Modelling – from molecules to mega-scale: general discussion. Faraday Discussions, 2016, 192, 493-509.	1.6	0