
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3668324/publications.pdf Version: 2024-02-01

Ιιανιμινι \λ/ει

#	Article	IF	CITATIONS
1	Manipulating cobalt oxide on N-doped aligned electrospun carbon nanofibers towards instant electrochemical detection of dopamine secreted by living cells. Applied Surface Science, 2022, 577, 151912.	3.1	12
2	Recent Trends and Advances of Co3O4 Nanoparticles in Environmental Remediation of Bacteria in Wastewater. Nanomaterials, 2022, 12, 1129.	1.9	14
3	Dark-Field Microscopic Study of Cellular Uptake of Carbon Nanodots: Nuclear Penetrability. Molecules, 2022, 27, 2437.	1.7	5
4	Mingled MnO ₂ and Co ₃ O ₄ Binary Nanostructures on Well-Aligned Electrospun Carbon Nanofibers for Nonenzymatic Glucose Oxidation and Sensing. Crystal Growth and Design, 2021, 21, 1527-1539.	1.4	21
5	Modulation of Macrophage Polarization by Carbon Nanodots and Elucidation of Carbon Nanodot Uptake Routes in Macrophages. Nanomaterials, 2021, 11, 1116.	1.9	8
6	Binary MnO ₂ /Co ₃ O ₄ Metal Oxides Wrapped on Superaligned Electrospun Carbon Nanofibers as Binder Free Supercapacitor Electrodes. Energy & Fuels, 2021, 35, 8396-8405.	2.5	39
7	Carbon Nanodots Inhibit Oxidized Low Density Lipoprotein-Induced Injury and Monocyte Adhesion to Endothelial Cells Through Scavenging Reactive Oxygen Species. Journal of Biomedical Nanotechnology, 2021, 17, 1654-1667.	0.5	2
8	Amphiphilic phospholipid–iodinated polymer conjugates for bioimaging. Biomaterials Science, 2021, 9, 5045-5056.	2.6	1
9	Antiproliferative and ROS Regulation Activity of Photoluminescent Curcumin-Derived Nanodots. ACS Applied Bio Materials, 2021, 4, 8477-8486.	2.3	3
10	High Quantum Yield Fluorescent Carbon Nanodots for detection of Fe (III) Ions and Electrochemical Study of Quenching Mechanism. Talanta, 2020, 209, 120538.	2.9	36
11	The Glucose Effect on Direct Electrochemistry and Electron Transfer Reaction of Glucose Oxidase Entrapped in a Carbon Nanotubeâ€Polymer Matrix. ChemistrySelect, 2020, 5, 12224-12231.	0.7	4
12	Design of Curcumin Loaded Carbon Nanodots Delivery System: Enhanced Bioavailability, Release Kinetics, and Anticancer Activity. ACS Applied Bio Materials, 2020, 3, 8776-8785.	2.3	26
13	Elemental Core Level Shift in High Entropy Alloy Nanoparticles <i>via</i> X-ray Photoelectron Spectroscopy Analysis and First-Principles Calculation. ACS Nano, 2020, 14, 17704-17712.	7.3	48
14	A plasmonic nanoledge array sensor for detection of anti-insulin antibodies of type 1 diabetes biomarker. Nanotechnology, 2020, 31, 325503.	1.3	3
15	Novel microwave synthesis of near-metallic copper sulfide nanodiscs with size control: experimental and DFT studies of charge carrier density. Nanoscale Advances, 2020, 2, 1054-1058.	2.2	19
16	Carbon Nanodots Derived from Urea and Citric Acid in Living Cells: Cellular Uptake and Antioxidation Effect. Langmuir, 2020, 36, 8632-8640.	1.6	26
17	Nitrogen and sulfur co-doped carbon nanodots in living EA.hy926 and A549 cells: oxidative stress effect and mitochondria targeting. Journal of Materials Science, 2020, 55, 6093-6104.	1.7	19
18	Experimental and Time-Dependent Density Functional Theory Modeling Studies on the Optical Properties of Carbon Nanodots. Journal of Physical Chemistry C, 2020, 124, 4684-4692.	1.5	14

#	Article	IF	CITATIONS
19	Solid-state growth of Ag nanowires and analysis of the self-growing process on a bio-polymer chitosan film. New Journal of Chemistry, 2019, 43, 3529-3535.	1.4	1
20	Magnetically-enhanced electron transfer from immobilized galvinoxyl radicals. Electrochemistry Communications, 2019, 99, 36-40.	2.3	4
21	Plasmon-Enhanced Fluorescence of Carbon Nanodots in Gold Nanoslit Cavities. Langmuir, 2019, 35, 8903-8909.	1.6	20
22	Tuning the Functional Groups on Carbon Nanodots and Antioxidant Studies. Molecules, 2019, 24, 152.	1.7	49
23	A bi-functional configuration for a metal-oxide film supercapacitor. Journal of Power Sources, 2019, 409, 1-5.	4.0	34
24	Stable Lowâ€Current Electrodeposition of αâ€MnO ₂ on Superaligned Electrospun Carbon Nanofibers for Highâ€Performance Energy Storage. Small, 2018, 14, 1703237.	5.2	30
25	Magnetoreception of Photoactivated Cryptochrome 1 in Electrochemistry and Electron Transfer. ACS Omega, 2018, 3, 4752-4759.	1.6	13
26	Surface Plasmon Resonance of A Bimetallic Nanostructured Film for Enhanced Optical Sensitivity. ChemistrySelect, 2018, 3, 3018-3023.	0.7	3
27	Simultaneous oxidation of Hg0 and NH3-SCR of NO by nanophase Ce x Zr y Mn z O2 at low temperature: the interaction and mechanism. Environmental Science and Pollution Research, 2018, 25, 14471-14485.	2.7	15
28	Magnetic Fieldâ€Enhanced 4â€Electron Pathway for Wellâ€Aligned Co ₃ O ₄ /Electrospun Carbon Nanofibers in the Oxygen Reduction Reaction. ChemSusChem, 2018, 11, 580-588.	3.6	65
29	Antioxidant Capacity of Nitrogen and Sulfur Codoped Carbon Nanodots. ACS Applied Nano Materials, 2018, 1, 2699-2708.	2.4	46
30	Solid-state synthesis of silver nanowires using biopolymer thin films. Materials Today Nano, 2018, 1, 22-28.	2.3	10
31	Hierarchical carbon composite nanofibrous electrode material for high-performance aqueous supercapacitors. Materials Chemistry and Physics, 2018, 214, 557-563.	2.0	15
32	Low-temperature co-purification of NOx and Hg0 from simulated flue gas by CexZryMnzO2/r-Al2O3: the performance and its mechanism. Environmental Science and Pollution Research, 2018, 25, 20575-20590.	2.7	5
33	Nanoarchitectured electrodes for supercapacitance energy storage. , 2018, , 215-244.		2
34	Functional thin films and nanostructures for sensors. , 2018, , 169-213.		3
35	Plasmon–Exciton Coupling in Photosystem I Based Biohybrid Photoelectrochemical Cells. ACS Applied Bio Materials, 2018, 1, 802-807.	2.3	9
36	Localized Surface Plasmon Resonance (LSPR)-Coupled Fiber-Optic Nanoprobe for the Detection of Protein Biomarkers. Methods in Molecular Biology, 2017, 1571, 1-14.	0.4	3

#	Article	IF	CITATIONS
37	Improved supercapacitor performance of MnO2-electrospun carbon nanofibers electrodes by mT magnetic field. Journal of Power Sources, 2017, 358, 22-28.	4.0	80
38	Protein Trapping in Plasmonic Nanoslit and Nanoledge Cavities: The Behavior and Sensing. Analytical Chemistry, 2017, 89, 5221-5229.	3.2	12
39	Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor. Analyst, The, 2017, 142, 1974-1981.	1.7	61
40	Uniformly electrodeposited α-MnO2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction. Electrochimica Acta, 2017, 256, 232-240.	2.6	42
41	Alternative SiO ₂ Surface Direct MDCK Epithelial Behavior. ACS Biomaterials Science and Engineering, 2017, 3, 3307-3317.	2.6	2
42	A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic applications and energy gap investigation. Physical Chemistry Chemical Physics, 2017, 19, 20101-20109.	1.3	53
43	Electrochemical Study of DPPH Radical Scavenging for Evaluating the Antioxidant Capacity of Carbon Nanodots. Journal of Physical Chemistry C, 2017, 121, 18635-18642.	1.5	56
44	Silver nanowires (AgNWs) growth in-situ on chitosan polymer matrix film for SERS application. , 2017, , ,		2
45	New insight into advection of organic contaminate plume at drain outlet areas. Environmental Nanotechnology, Monitoring and Management, 2016, 6, 76-82.	1.7	0
46	New nitrogen-rich azo-bridged porphyrin-conjugated microporous networks for high performance of gas capture and storage. RSC Advances, 2016, 6, 30048-30055.	1.7	66
47	A semi-analytical decomposition analysis of surface plasmon generation and the optimal nanoledge plasmonic device. RSC Advances, 2016, 6, 17196-17203.	1.7	11
48	Recent advances in surface-enhanced raman spectroscopy (SERS): Finite-difference time-domain (FDTD) method for SERS and sensing applications. TrAC - Trends in Analytical Chemistry, 2016, 75, 162-173.	5.8	75
49	Frontiers in nano-architectured carbon–metal oxide electrodes for supercapacitance energy storage: a review. Frontiers in Nanoscience and Nanotechnology, 2016, 2, 78-85.	0.3	10
50	New Evidence for a Quasi-Simultaneous Proton-Coupled Two-Electron Transfer and Direct Wiring for Glucose Oxidase Captured by the Carbon Nanotube–Polymer Matrix. Journal of Physical Chemistry C, 2015, 119, 14900-14910.	1.5	18
51	An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosensors and Bioelectronics, 2014, 61, 95-101.	5.3	173
52	A nanocomposite of copper(ii) functionalized graphene and application for sensing sulfurated organophosphorus pesticides. New Journal of Chemistry, 2013, 37, 3956.	1.4	12
53	Highly water-soluble, near-infrared emissive BODIPY polymeric dye bearing RGD peptide residues for cancer imaging. Analytica Chimica Acta, 2013, 758, 138-144.	2.6	40
54	Water-Soluble Noncovalently Engineered Graphene-Neutral Red Nanocomposite with Photocurrent Generating Capacity. Journal of Nanoscience and Nanotechnology, 2012, 12, 1792-1798.	0.9	4

#	Article	IF	CITATIONS
55	An In-Plane Nanofluidic Nanoplasmonics-Based Platform for Biodetection. , 2012, , .		0
56	Nanostructured optical microchips for cancer biomarker detection. Biosensors and Bioelectronics, 2012, 38, 382-388.	5.3	46
57	Transmission SPR of Gold Nanoslit Array and Ultrasensitive Detection of a Retinol Binding Protein. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
58	Carbon nanotube film-based cantilever for light and thermal energy harvesting. , 2010, , .		2
59	Molecular Chirality and Charge Transfer through Self-Assembled Scaffold Monolayers. Journal of Physical Chemistry B, 2006, 110, 1301-1308.	1.2	58
60	Probing Electron Tunneling Pathways:Â Electrochemical Study of Rat Heart Cytochromecand Its Mutant on Pyridine-Terminated SAMs. Journal of Physical Chemistry B, 2004, 108, 16912-16917.	1.2	68
61	Surface-Enhanced Resonance Raman Spectroscopic and Electrochemical Study of Cytochrome c Bound on Electrodes through Coordination with Pyridinyl-Terminated Self-Assembled Monolayers. Journal of Physical Chemistry B, 2004, 108, 2261-2269.	1.2	62
62	Charge-Transfer Mechanism for CytochromecAdsorbed on Nanometer Thick Films. Distinguishing Frictional Control from Conformational Gating. Journal of the American Chemical Society, 2003, 125, 7704-7714.	6.6	124
63	Control of the Electron Transfer Rate between Cytochromecand Gold Electrodes by the Manipulation of the Electrode's Hydrogen Bonding Character. Langmuir, 2003, 19, 2378-2387.	1.6	27
64	Direct Wiring of Cytochromec's Heme Unit to an Electrode:Â Electrochemical Studies. Journal of the American Chemical Society, 2002, 124, 9591-9599.	6.6	144
65	Electron-Transfer Dynamics of Cytochrome C: A Change in the Reaction Mechanism with Distance. Angewandte Chemie - International Edition, 2002, 41, 4700-4703.	7.2	80
66	Direct electron transfer reactions of glucose oxidase and D-amino acid oxidase at a glassy carbon electrode in organic media. Journal of Shanghai University, 1998, 2, 77-80.	0.1	0
67	Reagentless amperometric biosensor highly sensitive to hydrogen peroxide based on the incorporation of Meldola Blue, fumed-silica and horseradish peroxidase into carbon paste. Fresenius' Journal of Analytical Chemistry, 1997, 357, 297-301.	1.5	17
68	An amperometric Meldola Blue-mediated sensor high sensitive to hydrogen peroxide based on immobilization of horseradish peroxidase in a composite membrane of regenerated silk fibroin and poly(vinyl alcohol). Analytica Chimica Acta, 1996, 329, 97-103.	2.6	20