Claudio Cabral-Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3667855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. International Journal of Nanomedicine, 2013, 8, 1645.	3.3	59
2	Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. International Journal of Nanomedicine, 2012, 7, 2109.	3.3	58
3	Antibacterial and Antibiofilm Activities of the Photothermal Therapy Using Gold Nanorods against Seven Different Bacterial Strains. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	40
4	Synthesis and characterization of lipophilic bismuth dimercaptopropanol nanoparticles and their effects on oral microorganisms growth and biofilm formation. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	37
5	Association of rotavirus viroplasms with microtubules through NSP2 and NSP5. Memorias Do Instituto Oswaldo Cruz, 2006, 101, 603-611.	0.8	35
6	In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. International Journal of Nanomedicine, 2018, Volume 13, 6089-6097.	3.3	33
7	Green Synthesis of Silver Nanoparticles and Their Bactericidal and Antimycotic Activities against Oral Microbes. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	28
8	Antimicrobial and antibiofilm activities of MTA supplemented with bismuth lipophilic nanoparticles. Dental Materials Journal, 2017, 36, 503-510.	0.8	27
9	Antitumor activity of a hydrogel loaded with lipophilic bismuth nanoparticles on cervical, prostate, and colon human cancer cells. Anti-Cancer Drugs, 2020, 31, 251-259.	0.7	13
10	Effect of Lipophilic Bismuth Nanoparticles on Erythrocytes. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	10
11	Hydroxyapatite decreases cytotoxicity of a glass ionomer cement by calcium fluoride uptake in vitro. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 42-46.	0.7	6
12	Effect of Bismuth Lipophilic Nanoparticles (BisBAL NPs) on <i>Trichomonas vaginalis</i> Growth. Journal of Nanoscience and Nanotechnology, 2017, 17, 4618-4622.	0.9	5
13	Antimicrobial potential of bismuth lipophilic nanoparticles embedded into chitosan-based membrane. Dental Materials Journal, 2019, 38, 611-620.	0.8	5
14	Biocompatibility and Surface Characteristics of Resin-Modified Glass Ionomer Cements with Ammonium Quaternary Compounds or Silver Nanoparticles: AnIn VitroStudy. Journal of Nanomaterials, 2018, 2018, 1-13.	1.5	4
15	Comparative Study of Antitumor Activity between Lipophilic Bismuth Nanoparticles (BisBAL NPs) and Chlorhexidine on Human Squamous Cell Carcinoma. Journal of Nanomaterials, 2019, 2019, 1-8.	1.5	4
16	Antimicrobial potential of AH Plus supplemented with bismuth lipophilic nanoparticles on <i>E. faecalis</i> isolated from clinical isolates. Journal of Applied Biomaterials and Functional Materials, 2022, 20, 228080002110692.	0.7	2
17	Bismuth Lipophilic Nanoparticles (BisBAL NP) Inhibit the Growth of Tumor Cells in a Mouse Melanoma Model. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 2548-2557.	0.9	2
18	Cetylpyridinium chloride inhibits human breast tumor cells growth in a no-selective way. Journal of Applied Biomaterials and Functional Materials, 2022, 20, 228080002210921.	0.7	2

#	Article	IF	CITATIONS
19	Biochemical characterization and in vitro biological activities of the epithelial cell extracts from Hypanus dipterurus spine. Toxicon, 2020, 187, 129-135.	0.8	1
20	Synergistic Antitumor Activity of Gramicidin/Lipophilic Bismuth Nanoparticles (BisBAL NPs) on Human Cervical Tumor Cells. Frontiers in Nanotechnology, 2021, 3, .	2.4	1