Ge Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3667734/ge-wang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 516
 13,418
 55
 99

 papers
 citations
 h-index
 g-index

 601
 16,889
 4.6
 6.92

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
516	AI-Based Reconstruction for Fast MRIA Systematic Review and Meta-Analysis. <i>Proceedings of the IEEE</i> , 2022 , 110, 224-245	14.3	8
515	Stabilizing deep tomographic reconstruction: Part A. Hybrid framework and experimental results. <i>Patterns</i> , 2022 , 100474	5.1	6
514	Stabilizing deep tomographic reconstruction: Part B. Convergence analysis and adversarial attacks. <i>Patterns</i> , 2022 , 100475	5.1	6
513	Increasing angular sampling through deep learning for stationary cardiac SPECT image reconstruction <i>Journal of Nuclear Cardiology</i> , 2022 , 1	2.1	1
512	Projection decomposition via univariate optimization for dual-energy CT. <i>Journal of X-Ray Science and Technology</i> , 2022 , 1-12	2.1	1
511	GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathological Image Detection. <i>Pattern Recognition</i> , 2022 , 108827	7.7	18
510	On a Sparse Shortcut Topology of Artificial Neural Networks. <i>IEEE Transactions on Artificial Intelligence</i> , 2021 , 1-1	4.7	O
509	Low-dimensional Manifold Constrained Disentanglement Network for Metal Artifact Reduction. <i>IEEE Transactions on Radiation and Plasma Medical Sciences</i> , 2021 , 1-1	4.2	2
508	Deep Tomographic Image Reconstruction: Yesterday, Today, and Tomorrow E ditorial for the 2nd Special Issue Machine Learning for Image Reconstruction <i>IEEE Transactions on Medical Imaging</i> , 2021 , 40, 2956-2964	11.7	3
507	Focused x-ray luminescence imaging system for small animals based on a rotary gantry. <i>Journal of Biomedical Optics</i> , 2021 , 26,	3.5	3
506	Optimized collusion prevention for online exams during social distancing. <i>Npj Science of Learning</i> , 2021 , 6, 5	6	8
505	Data Augmentation for Training Deep Neural Networks 2021 , 151-164		0
504	Monochromatic image reconstruction via machine learning. <i>Machine Learning: Science and Technology</i> , 2021 , 2, 025032	5.1	1
503	Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography. <i>Nature Communications</i> , 2021 , 12, 2963	17.4	11
502	Spatial Distributions of At-Many-Stations Hydraulic Geometry for Mountain Rivers Originated From the Qinghai-Tibet Plateau. <i>Water Resources Research</i> , 2021 , 57, e2020WR029090	5.4	2
501	Prediction of Coronary Calcification and Stenosis: Role of Radiomics From Low-Dose CT. <i>Academic Radiology</i> , 2021 , 28, 972-979	4.3	1
500	Compton-camera-based SPECT for thyroid cancer imaging. <i>Journal of X-Ray Science and Technology</i> , 2021 , 29, 111-124	2.1	1

Biomedical imaging and analysis through deep learning **2021**, 49-74

498	Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising <i>IEEE Transactions on Radiation and Plasma Medical Sciences</i> , 2021 , 5, 213-223	4.2	11
497	Attention augmented multi-scale network for single image super-resolution. <i>Applied Intelligence</i> , 2021 , 51, 935-951	4.9	4
496	Task-Oriented Low-Dose CT Image Denoising. <i>Lecture Notes in Computer Science</i> , 2021 , 441-450	0.9	3
495	On Interpretability of Artificial Neural Networks: A Survey <i>IEEE Transactions on Radiation and Plasma Medical Sciences</i> , 2021 , 5, 741-760	4.2	34
494	River Extraction under Bankfull Discharge Conditions Based on Sentinel-2 Imagery and DEM Data. <i>Remote Sensing</i> , 2021 , 13, 2650	5	5
493	Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network. <i>IEEE Transactions on Medical Imaging</i> , 2021 , 40, 2170-2181	11.7	8
492	Feasibility analysis on simultaneous electron density and attenuation coefficient reconstruction. <i>Medical Physics</i> , 2021 , 48, 7236-7249	4.4	
491	Multi-window learning for metal artifact reduction 2021,		2
490	Deep learning based spectral CT imaging. <i>Neural Networks</i> , 2021 , 144, 342-358	9.1	7
489	DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction. <i>IEEE Transactions on Medical Imaging</i> , 2021 , 40, 3002-3014	11.7	19
488	Deep learning for tomographic image reconstruction. <i>Nature Machine Intelligence</i> , 2020 , 2, 737-748	22.5	66
487	Review of CT image reconstruction open source toolkits. <i>Journal of X-Ray Science and Technology</i> , 2020 , 28, 619-639	2.1	9
486	Deep learning for high-resolution and high-sensitivity interferometric phase contrast imaging. <i>Scientific Reports</i> , 2020 , 10, 9891	4.9	6
485	A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing. <i>Medical Physics</i> , 2020 , 47, 2526-2536	4.4	25
484	Predictors of Adverse Radiation Effect in Brain Metastasis Patients Treated With Stereotactic Radiosurgery and Immune Checkpoint Inhibitor Therapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2020 , 108, 295-303	4	10
483	Multi-Contrast Super-Resolution MRI Through a Progressive Network. <i>IEEE Transactions on Medical Imaging</i> , 2020 , 39, 2738-2749	11.7	25
482	MRI Super-Resolution With Ensemble Learning and Complementary Priors. <i>IEEE Transactions on Computational Imaging</i> , 2020 , 6, 615-624	4.5	29

481	Universal approximation with quadratic deep networks. <i>Neural Networks</i> , 2020 , 124, 383-392	9.1	12
480	A framework for least squares nonnegative matrix factorizations with Tikhonov regularization. <i>Neurocomputing</i> , 2020 , 387, 78-90	5.4	2
479	AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT. <i>Medical Physics</i> , 2020 , 47, 2916-2930	4.4	15
478	Synergizing medical imaging and radiotherapy with deep learning. <i>Machine Learning: Science and Technology</i> , 2020 , 1, 021001	5.1	9
477	Deep Learning Based High-Resolution Reconstruction of Trabecular Bone Microstructures from Low-Resolution CT Scans using GAN-CIRCLE. <i>Proceedings of SPIE</i> , 2020 , 11317,	1.7	11
476	Multi-task learning for mortality prediction in LDCT images 2020 ,		4
475	X-ray luminescence imaging for small animals. <i>Proceedings of SPIE</i> , 2020 , 11224,	1.7	2
474	Modeling of moral decisions with deep learning. <i>Visual Computing for Industry, Biomedicine, and Art</i> , 2020 , 3, 27	2.9	О
473	Clinical Micro-CT Empowered by Interior Tomography, Robotic Scanning, and Deep Learning. <i>IEEE Access</i> , 2020 , 8, 229018-229032	3.5	1
472	Quantitative analysis of a micro array anode structured target for hard x-ray grating interferometry. <i>Physics in Medicine and Biology</i> , 2020 , 65, 035008	3.8	2
471	Quadratic Autoencoder (Q-AE) for Low-Dose CT Denoising. <i>IEEE Transactions on Medical Imaging</i> , 2020 , 39, 2035-2050	11.7	24
47º	Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping. <i>Medical Image Analysis</i> , 2020 , 60, 101628	15.4	25
469	Impact of brain metastasis velocity on neurologic death for brain metastasis patients experiencing distant brain failure after initial stereotactic radiosurgery. <i>Journal of Neuro-Oncology</i> , 2020 , 146, 285-29	2 ^{4.8}	5
468	Artificial intelligence in image reconstruction: The change is here. <i>Physica Medica</i> , 2020 , 79, 113-125	2.7	15
467	Virtual Monoenergetic CT Imaging via Deep Learning. <i>Patterns</i> , 2020 , 1, 100128	5.1	14
466	Soft Autoencoder and Its Wavelet Adaptation Interpretation. <i>IEEE Transactions on Computational Imaging</i> , 2020 , 6, 1245-1257	4.5	3
465	Deep Efficient End-to-end Reconstruction (DEER) Network for Few-view Breast CT Image Reconstruction. <i>IEEE Access</i> , 2020 , 8, 196633-196646	3.5	6
464	Fuzzy logic interpretation of quadratic networks. <i>Neurocomputing</i> , 2020 , 374, 10-21	5.4	6

(2019-2020)

463	Knowledge-Based Analysis for Mortality Prediction From CT Images. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2020 , 24, 457-464	7.2	11
462	CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE). <i>IEEE Transactions on Medical Imaging</i> , 2020 , 39, 188-203	11.7	140
461	Low-Dose CT Image Denoising Using a Generative Adversarial Network With a Hybrid Loss Function for Noise Learning. <i>IEEE Access</i> , 2020 , 8, 67519-67529	3.5	17
460	MCDNet IA Denoising Convolutional Neural Network to Accelerate Monte Carlo Radiation Transport Simulations: A Proof of Principle With Patient Dose From X-Ray CT Imaging. <i>IEEE Access</i> , 2019 , 7, 76680-76689	3.5	5
459	Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. <i>Nature Machine Intelligence</i> , 2019 , 1, 269-276	22.5	131
458	Design optimization of a periodic microstructured array anode for hard x-ray grating interferometry. <i>Physics in Medicine and Biology</i> , 2019 , 64, 145011	3.8	5
457	A novel framework for the NMF methods with experiments to unmixing signals and feature representation. <i>Journal of Computational and Applied Mathematics</i> , 2019 , 362, 205-218	2.4	1
456	Graph Regularized Sparse Autoencoders with Nonnegativity Constraints. <i>Neural Processing Letters</i> , 2019 , 50, 247-262	2.4	O
455	A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. <i>Radiology</i> , 2019 , 291, 781-791	20.5	148
454	Immunotherapy is associated with improved survival and decreased neurologic death after SRS for brain metastases from lung and melanoma primaries. <i>Neuro-Oncology Practice</i> , 2019 , 6, 402-409	2.2	26
453	Spectral CT Reconstruction ASSIST: Aided by Self-Similarity in Image-Spectral Tensors. <i>IEEE Transactions on Computational Imaging</i> , 2019 , 5, 420-436	4.5	15
452	A Reconfigurable energy-resolving method for a layered edge-on detector. <i>Physics in Medicine and Biology</i> , 2019 , 64, 135008	3.8	2
451	A new iterative algorithm for ring artifact reduction in CT using ring total variation. <i>Medical Physics</i> , 2019 , 46, 4803-4815	4.4	2
450	Nanophosphor-Based Contrast Agents for Spectral X-ray Imaging. <i>Nanomaterials</i> , 2019 , 9,	5.4	4
449	Visual Attention Network for Low-Dose CT. <i>IEEE Signal Processing Letters</i> , 2019 , 26, 1152-1156	3.2	17
448	Accelerated Correction of Reflection Artifacts by Deep Neural Networks in Photo-Acoustic Tomography. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 2615	2.6	11
447	A dual-stream deep convolutional network for reducing metal streak artifacts in CT images. <i>Physics in Medicine and Biology</i> , 2019 , 64, 235003	3.8	15
446	Sound Transmission-Based Elastography Imaging. <i>IEEE Access</i> , 2019 , 7, 74383-74392	3.5	2

445	Hybrid Neural Networks for Mortality Prediction from LDCT Images. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2019 , 2019, 6243-6246	0.9	1
444	Comparison of deep learning and human observer performance for detection and characterization of simulated lesions. <i>Journal of Medical Imaging</i> , 2019 , 6, 025503	2.6	4
443	A directional TV based ring artifact reduction method 2019 ,		3
442	Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach 2019 ,		4
441	Deep-learning-based breast CT for radiation dose reduction 2019 ,		3
440	Super-resolution MRI and CT through GAN-CIRCLE 2019 ,		18
439	Training artificial neurons: an introduction to machine learning 2019,		1
438	Dual network architecture for few-view CT - trained on ImageNet data and transferred for medical imaging 2019 ,		5
437	Quadratic autoencoder for low-dose CT denoising 2019,		2
436	Low-dose CT via deep CNN with skip connection and network-in-network 2019 ,		15
436	Low-dose CT via deep CNN with skip connection and network-in-network 2019 , CT image reconstruction on a low dimensional manifold. <i>Inverse Problems and Imaging</i> , 2019 , 13, 449-46	50 .1	15 7
		5 Q .1	
435	CT image reconstruction on a low dimensional manifold. <i>Inverse Problems and Imaging</i> , 2019 , 13, 449-46 Generative Low-Dose CT Image Denoising. <i>Advances in Computer Vision and Pattern Recognition</i> ,		7
435	CT image reconstruction on a low dimensional manifold. <i>Inverse Problems and Imaging</i> , 2019 , 13, 449-46. Generative Low-Dose CT Image Denoising. <i>Advances in Computer Vision and Pattern Recognition</i> , 2019 , 277-297 Comparison of deep learning and human observer performance for lesion detection and		7
435 434 433	CT image reconstruction on a low dimensional manifold. <i>Inverse Problems and Imaging</i> , 2019 , 13, 449-46. Generative Low-Dose CT Image Denoising. <i>Advances in Computer Vision and Pattern Recognition</i> , 2019 , 277-297 Comparison of deep learning and human observer performance for lesion detection and characterization 2019 ,		7 1
435 434 433 432	CT image reconstruction on a low dimensional manifold. <i>Inverse Problems and Imaging</i> , 2019 , 13, 449-46 Generative Low-Dose CT Image Denoising. <i>Advances in Computer Vision and Pattern Recognition</i> , 2019 , 277-297 Comparison of deep learning and human observer performance for lesion detection and characterization 2019 , A novel transfer learning framework for low-dose CT 2019 , Deep Encoder-Decoder Adversarial Reconstruction(DEAR) Network for 3D CT from Few-View Data.	1.1	7 1 1
435 434 433 432 431	CT image reconstruction on a low dimensional manifold. <i>Inverse Problems and Imaging</i> , 2019 , 13, 449-46. Generative Low-Dose CT Image Denoising. <i>Advances in Computer Vision and Pattern Recognition</i> , 2019 , 277-297 Comparison of deep learning and human observer performance for lesion detection and characterization 2019 , A novel transfer learning framework for low-dose CT 2019 , Deep Encoder-Decoder Adversarial Reconstruction(DEAR) Network for 3D CT from Few-View Data. <i>Bioengineering</i> , 2019 , 6,	5-3	7 1 3 8

(2018-2018)

427	Clinical validation of CT image reconstruction with interior tomography. <i>Journal of X-Ray Science and Technology</i> , 2018 , 26, 303-309	2.1	1
426	Generalized backpropagation algorithm for training second-order neural networks. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2018 , 34, e2956	2.6	10
425	3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network. <i>IEEE Transactions on Medical Imaging</i> , 2018 , 37, 1522-1534	11.7	160
424	Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. <i>IEEE Transactions on Medical Imaging</i> , 2018 , 37, 1348-1357	11.7	546
423	Learning From Pseudo-Randomness With an Artificial Neural NetworkDoes God Play Pseudo-Dice?. <i>IEEE Access</i> , 2018 , 6, 22987-22992	3.5	9
422	A new type of neurons for machine learning. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2018 , 34, e2920	2.6	15
421	Wavelet-based joint CT-MRI reconstruction. <i>Journal of X-Ray Science and Technology</i> , 2018 , 26, 379-393	2.1	1
42 0	Increased separability of K-edge nanoparticles by photon-counting detectors for spectral micro-CT. <i>Journal of X-Ray Science and Technology</i> , 2018 , 26, 707-726	2.1	5
419	Novel Detection Scheme for X-ray Small-Angle Scattering. <i>IEEE Transactions on Radiation and Plasma Medical Sciences</i> , 2018 , 2, 315-325	4.2	2
418	Structurally-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising. <i>IEEE Access</i> , 2018 , 6, 41839-41855	3.5	99
417	K-edge-based interior tomography. <i>Physics in Medicine and Biology</i> , 2018 , 63, 165017	3.8	
416	General rigid motion correction for computed tomography imaging based on locally linear embedding. <i>Optical Engineering</i> , 2018 , 57, 1	1.1	4
415	Metal artifact reduction for radiation therapy: a simulation study 2018,		3
414	Optical-CT Imaging 2018 , 167-186		
413	Radiomics in lung cancer: Its time is here. <i>Medical Physics</i> , 2018 , 45, 997-1000	4.4	8
412	E-IndexA Bibliometric Index of Research Efficiency. <i>IEEE Access</i> , 2018 , 6, 51355-51364	3.5	3
411	Correction for BD Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2D Trained Network[Jun 18 1522-1534]. <i>IEEE Transactions on Medical Imaging</i> , 2018 , 37, 2750-2	7 5 6 ⁷	3
410	Image Reconstruction is a New Frontier of Machine Learning. <i>IEEE Transactions on Medical Imaging</i> , 2018 , 37, 1289-1296	11.7	236

409	Simultaneous Emission-Transmission Tomography in an MRI Hardware Framework. <i>IEEE Transactions on Radiation and Plasma Medical Sciences</i> , 2018 , 2, 326-336	4.2	2
408	Multifactorial Analysis of Mortality in Screening Detected Lung Cancer. <i>Journal of Oncology</i> , 2018 , 2018, 1296246	4.5	8
407	Radiative transfer with delta-Eddington-type phase functions. <i>Applied Mathematics and Computation</i> , 2017 , 300, 70-78	2.7	2
406	Superiorization-based multi-energy CT image reconstruction. <i>Inverse Problems</i> , 2017 , 33,	2.3	4
405	Deep learning methods to guide CT image reconstruction and reduce metal artifacts 2017,		20
404	Machine learning will transform radiology significantly within the next 5 years. <i>Medical Physics</i> , 2017 , 44, 2041-2044	4.4	41
403	Convex Hull Aided Registration Method (CHARM). <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2017 , 23, 2042-2055	4	10
402	New concept on an integrated interior magnetic resonance imaging and medical linear accelerator system for radiation therapy. <i>Journal of Medical Imaging</i> , 2017 , 4, 015004	2.6	5
401	Characteristic performance investigation of a photon counting detector for x-ray fluorescence imaging applications 2017 ,		1
400	Quest for the ultimate cardiac CT scanner. <i>Medical Physics</i> , 2017 , 44, 4506-4524	4.4	6
399	Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network. <i>IEEE Transactions on Medical Imaging</i> , 2017 , 36, 2524-2535	11.7	580
398	Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction. <i>Physics in Medicine and Biology</i> , 2017 , 62, R49-R80	3.8	71
397	X-ray scatter correction for multi-source interior computed tomography. <i>Medical Physics</i> , 2017 , 44, 71-8	34.4	8
396	Hybrid Imaging System for Simultaneous Spiral MR and X-ray (MRX) Scans. <i>IEEE Access</i> , 2017 , 5, 1050-10	1 6 15	10
395	High-resolution X-ray phase-contrast imaging with a grating interferometer. <i>Journal of the Korean Physical Society</i> , 2017 , 71, 538-542	0.6	4
394	Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT. <i>Sensing and Imaging</i> , 2017 , 18, 1	1.4	4
393	Low-dose CT denoising with convolutional neural network 2017,		36
392	Tensor-Based Dictionary Learning for Spectral CT Reconstruction. <i>IEEE Transactions on Medical Imaging</i> , 2017 , 36, 142-154	11.7	91

(2016-2017)

391	Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning. <i>IEEE Transactions on Medical Imaging</i> , 2017 , 36, 2466-2478	11.7	23
390	Initial analysis of the middle problem in CT image reconstruction. <i>Journal of X-Ray Science and Technology</i> , 2017 ,	2.1	1
389	Model and reconstruction of a K-edge contrast agent distribution with an X-ray photon-counting detector. <i>Optics Express</i> , 2017 , 25, 9378-9392	3.3	6
388	Low-dose CT via convolutional neural network. <i>Biomedical Optics Express</i> , 2017 , 8, 679-694	3.5	382
387	Optical tomographic imaging for breast cancer detection. <i>Journal of Biomedical Optics</i> , 2017 , 22, 1-6	3.5	7
386	Deep learning methods for CT image-domain metal artifact reduction 2017,		23
385	Numerical study on simultaneous emission and transmission tomography in the MRI framework 2017 ,		1
384	Deep learning for low-dose CT 2017 ,		1
383	Optical-CT Imaging. Imaging in Medical Diagnosis and Therapy, 2016 , 167-186		1
382	Spectral CT Reconstruction with Image Sparsity and Spectral Mean. <i>IEEE Transactions on Computational Imaging</i> , 2016 , 2, 510-523	4.5	57
381	Upper-Bound on Dose Reduction in CT Reconstruction for Nodule Detection. <i>IEEE Access</i> , 2016 , 4, 4247	'-4 ₃ 2 ₅ 53	4
380	Metal Artifact Reduction in CT: Where Are We After Four Decades?. IEEE Access, 2016, 4, 5826-5849	3.5	96
379	Innovation and fusion of x-ray and optical tomography for mouse studies of breast cancer 2016,		1
378	A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT. <i>Inverse Problems</i> , 2016 , 32,	2.3	2
377	High-kVp Assisted Metal Artifact Reduction for X-ray Computed Tomography. <i>IEEE Access</i> , 2016 , 4, 476	9 3 1376	18
376	A skeleton-tree-based approach to acinar morphometric analysis using microcomputed tomography with comparison of acini in young and old C57BL/6 mice. <i>Journal of Applied Physiology</i> , 2016 , 120, 1402-9	3.7	6
375	Cardiac CT: A system architecture study. <i>Journal of X-Ray Science and Technology</i> , 2016 , 24, 43-65	2.1	3
374	X-ray CT geometrical calibration via locally linear embedding. <i>Journal of X-Ray Science and Technology</i> , 2016 , 24, 241-56	2.1	14

373	Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction. <i>Journal of X-Ray Science and Technology</i> , 2016 , 24, 161-75	2.1	3
372	Fluorescent imaging of endothelial cells in bioengineered blood vessels: the impact of crosslinking of the scaffold. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2016 , 10, 955-966	4.4	5
371	Simultaneous CT-MRI Reconstruction for Constrained Imaging Geometries Using Structural Coupling and Compressive Sensing. <i>IEEE Transactions on Biomedical Engineering</i> , 2016 , 63, 1301-1309	5	18
370	Energy Window Optimization for X-Ray K-Edge Tomographic Imaging. <i>IEEE Transactions on Biomedical Engineering</i> , 2016 , 63, 1623-30	5	19
369	Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors. <i>PLoS ONE</i> , 2016 , 11, e0155374	3.7	6
368	Robust Frame Based X-Ray CT Reconstruction. <i>Journal of Computational Mathematics</i> , 2016 , 34, 683-70	42.1	2
367	Small-angle scatter tomography with a photon-counting detector array. <i>Physics in Medicine and Biology</i> , 2016 , 61, 3734-48	3.8	5
366	A mixed reality approach for stereo-tomographic quantification of lung nodules. <i>Journal of X-Ray Science and Technology</i> , 2016 , 24, 615-25	2.1	2
365	An edge-on charge-transfer design for energy-resolved x-ray detection. <i>Physics in Medicine and Biology</i> , 2016 , 61, 4183-200	3.8	4
364	Morphometric differences between central vs. surface acini in A/J mice using high-resolution micro-computed tomography. <i>Journal of Applied Physiology</i> , 2016 , 121, 115-22	3.7	15
363	Sinogram-based attenuation correction in PET/CT. <i>Journal of X-Ray Science and Technology</i> , 2016 , 24, 9-22	2.1	О
362	Fully 3D geometrical calibration for Ian IX-ray grating-based imaging system. <i>Journal of X-Ray Science and Technology</i> , 2016 , 24, 821-836	2.1	2
361	A spectral interior CT by a framelet-based reconstruction algorithm. <i>Journal of X-Ray Science and Technology</i> , 2016 , 24, 771-785	2.1	2
360	A Perspective on Deep Imaging. <i>IEEE Access</i> , 2016 , 4, 8914-8924	3.5	242
359	Pseudo progression identification of glioblastoma with dictionary learning. <i>Computers in Biology and Medicine</i> , 2016 , 73, 94-101	7	11
358	Dynamic Assessment of the Endothelialization of Tissue-Engineered Blood Vessels Using an Optical Coherence Tomography Catheter-Based Fluorescence Imaging System. <i>Tissue Engineering - Part C: Methods</i> , 2015 , 21, 758-66	2.9	6
357	Spectral CT modeling and reconstruction with hybrid detectors in dynamic-threshold-based counting and integrating modes. <i>IEEE Transactions on Medical Imaging</i> , 2015 , 34, 716-28	11.7	37
356	Tensor-based dictionary learning for dynamic tomographic reconstruction. <i>Physics in Medicine and Biology</i> , 2015 , 60, 2803-18	3.8	50

(2014-2015)

355	High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing. <i>IEEE Transactions on Biomedical Engineering</i> , 2015 , 62, 248-55	5	20
354	Talbot interferometry with curved quasi-periodic gratings: towards large field of view X-ray phase-contrast imaging. <i>Optics Express</i> , 2015 , 23, 26576-85	3.3	3
353	A self-adaptive mask-enhanced dual-dictionary learning method for MRI-CT image reconstruction 2015 ,		1
352	Data consistency condition for truncated projections in fan-beam geometry. <i>Journal of X-Ray Science and Technology</i> , 2015 , 23, 627-38	2.1	3
351	Vision 20/20: Simultaneous CT-MRINext chapter of multimodality imaging. <i>Medical Physics</i> , 2015 , 42, 5879-89	4.4	20
350	Spherical grating based x-ray Talbot interferometry. <i>Medical Physics</i> , 2015 , 42, 6514-9	4.4	4
349	Spectral CT reconstruction using image sparsity and spectral correlation 2015,		3
348	X-Optogenetics and U-Optogenetics: Feasibility and Possibilities. <i>Photonics</i> , 2015 , 2, 23-39	2.2	23
347	Multimodal Biomedical Optical Imaging Review: Towards Comprehensive Investigation of Biological Tissues. <i>Current Molecular Imaging</i> , 2015 , 3, 72-87		7
346	Modulated luminescence tomography. <i>Inverse Problems and Imaging</i> , 2015 , 9, 579-589	2.1	1
345	Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom. <i>Medical Physics</i> , 2014 , 41, 031902	4.4	23
344	Elastography Method to Identify Material Distribution in Two-Phase Nonlinear Media. <i>Journal of Engineering Mechanics - ASCE</i> , 2014 , 140, 04014010	2.4	6
343	Dictionary-learning-based reconstruction method for electron tomography. <i>Scanning</i> , 2014 , 36, 377-38.	31.6	7
342	Stored luminescence computed tomography. <i>Applied Optics</i> , 2014 , 53, 5672-6	1.7	9
341	Analytic comparison between X-ray fluorescence CT and K-edge CT. <i>IEEE Transactions on Biomedical Engineering</i> , 2014 , 61, 975-85	5	24
340	SART-Type Half-Threshold Filtering Approach for CT Reconstruction. <i>IEEE Access</i> , 2014 , 2, 602-613	3.5	24
339	Comparison of lp-regularization-based reconstruction methods for time domain fluorescence molecular tomography on early time gates 2014 ,		1
338	Dynamic bowtie filter for cone-beam/multi-slice CT. <i>PLoS ONE</i> , 2014 , 9, e103054	3.7	15

337	Top-Level System Designs for Hybrid Low-Field MRI I T with Potential of Pulmonary Imaging. <i>Sensing and Imaging</i> , 2014 , 15, 1	1.4	3
336	X-Ray Fluorescence Computed Tomography With Polycapillary Focusing. <i>IEEE Access</i> , 2014 , 2, 1138-114.	23.5	6
335	A tensor PRISM algorithm for multi-energy CT reconstruction and comparative studies. <i>Journal of X-Ray Science and Technology</i> , 2014 , 22, 147-63	2.1	29
334	Top-level design and pilot analysis of low-end CT scanners based on linear scanning for developing countries. <i>Journal of X-Ray Science and Technology</i> , 2014 , 22, 673-86	2.1	5
333	A Stationary-Sources and Rotating-Detectors Computed Tomography Architecture for Higher Temporal Resolution and Lower Radiation Dose. <i>IEEE Access</i> , 2014 , 2, 1263-1271	3.5	11
332	. IEEE Access, 2014 , 2, 1568-1585	3.5	21
331	Dictionary Learning Based Low-Dose X-Ray CT Reconstruction 2014 , 99-119		5
330	Image reconstruction for x-ray K-edge imaging with a photon counting detector 2014 ,		4
329	. IEEE Access, 2014 , 2, 1359-1363	3.5	17
328	X-ray micro-modulated luminescence tomography (XMLT). <i>Optics Express</i> , 2014 , 22, 5572-80	3.3	8
327	L(p) regularization for early gate fluorescence molecular tomography. <i>Optics Letters</i> , 2014 , 39, 4156-9	3	55
326	Interior micro-CT with an offset detector. <i>Medical Physics</i> , 2014 , 41, 061915	4.4	7
325	Hybrid spectral micro-CT: system design, implementation, and preliminary results. <i>IEEE Transactions on Biomedical Engineering</i> , 2014 , 61, 246-53	5	20
324	Possible Animal Embryos from the Lower Cambrian (Stage 3) Shuijingtuo Formation, Hubei Province, South China. <i>Journal of Paleontology</i> , 2014 , 88, 385-394	1.1	18
323	Dictionary-learning-based reconstruction method for electron tomography. <i>Scanning</i> , 2014 , 36, 377-83	1.6	5
322	Study of scan protocol for exposure reduction in hybrid spectral micro-CT. <i>Scanning</i> , 2014 , 36, 444-55	1.6	1
321	Dictionary learning based low-dose x-ray CT reconstruction using a balancing principle 2014 ,		3
320	X-ray micromodulated luminescence tomography in dual-cone geometry. <i>Journal of Biomedical Optics</i> , 2014 , 19, 76002	3.5	18

319	Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique. <i>Optical Engineering</i> , 2014 , 53, 113101	1.1	12
318	Unsupervised deconvolution of dynamic imaging reveals intratumor vascular heterogeneity and repopulation dynamics. <i>PLoS ONE</i> , 2014 , 9, e112143	3.7	9
317	Preclinical Optical Molecular Imaging 2014 , 241-273		
316	Scout-view assisted interior micro-CT. <i>Physics in Medicine and Biology</i> , 2013 , 58, 4297-314	3.8	19
315	The meaning of interior tomography. <i>Physics in Medicine and Biology</i> , 2013 , 58, R161-86	3.8	56
314	A bibliometric analysis of academic publication and NIH funding. <i>Journal of Informetrics</i> , 2013 , 7, 318-32	243.1	19
313	Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT. <i>Lasers in Surgery and Medicine</i> , 2013 , 45, 391-400	3.6	10
312	Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology. <i>Journal of Applied Physiology</i> , 2013 , 114, 716-24	3.7	39
311	Energy-discriminative performance of a spectral micro-CT system. <i>Journal of X-Ray Science and Technology</i> , 2013 , 21, 335-45	2.1	11
310	A few-view reweighted sparsity hunting (FRESH) method for CT image reconstruction. <i>Journal of X-Ray Science and Technology</i> , 2013 , 21, 161-76	2.1	45
309	Dynamic bowtie for fan-beam CT. Journal of X-Ray Science and Technology, 2013, 21, 579-90	2.1	12
308	Combination of current-integrating/photon-counting detector modules for spectral CT. <i>Physics in Medicine and Biology</i> , 2013 , 58, 7009-24	3.8	25
307	Piecewise-constant-model-based interior tomography applied to dentin tubules. <i>Computational and Mathematical Methods in Medicine</i> , 2013 , 2013, 892451	2.8	3
306	Experimental studies on few-view reconstruction for high-resolution micro-CT. <i>Journal of X-Ray Science and Technology</i> , 2013 , 21, 25-42	2.1	9
305	Determining scientific impact using a collaboration index. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 9680-5	11.5	80
304	A limited-angle CT reconstruction method based on anisotropic TV minimization. <i>Physics in Medicine and Biology</i> , 2013 , 58, 2119-41	3.8	176
303	Marriage of CT and MRI for vulnerable plaque characterization. <i>Imaging in Medicine</i> , 2013 , 5, 95-97	1	1
302	X-ray fluorescence tomographic system design and image reconstruction. <i>Journal of X-Ray Science and Technology</i> , 2013 , 21, 1-8	2.1	14

On a family of differential approximations of the radiative transfer equation. Journal of

2.1

9

284

17,066010

Mathematical Chemistry, 2012, 50, 689-702

(2012-2012)

283	Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. <i>Radiology</i> , 2012 , 264, 567-80	20.5	205
282	X-ray dark-field imaging modeling. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2012 , 29, 908-12	1.8	15
281	Fourier transform-based iterative method for differential phase-contrast computed tomography. <i>Optics Letters</i> , 2012 , 37, 1784-6	3	6
280	Patch-wise non-local low-rank for few-view multi-energy CT reconstruction 2012,		2
279	2012,		1
278	A reweighted total variation minimization method for few view CT reconstruction in the instant CT 2012 ,		1
277	High-order total variation minimization for interior SPECT. Inverse Problems, 2012, 28,	2.3	19
276	Fair-view image reconstruction with dual dictionaries. <i>Physics in Medicine and Biology</i> , 2012 , 57, 173-89	3.8	80
275	Multi-energy CT reconstruction based on Low Rank and Sparsity with the Split-Bregman Method (MLRSS) 2012 ,		15
274	Interior tomography with continuous singular value decomposition. <i>IEEE Transactions on Medical Imaging</i> , 2012 , 31, 2108-19	11.7	12
273	Assessment of morphometry of pulmonary acini in mouse lungs by nondestructive imaging using multiscale microcomputed tomography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 17105-10	11.5	81
272	Stereo-imaging towards spectrography for 3D analysis from a single spectral view 2012,		1
271	A fiber-optic-based imaging system for nondestructive assessment of cell-seeded tissue-engineered scaffolds. <i>Tissue Engineering - Part C: Methods</i> , 2012 , 18, 677-87	2.9	14
270	Tetrahedron-based orthogonal simultaneous scan for cone-beam computed tomography. <i>Optical Engineering</i> , 2012 , 51, 80502	1.1	1
269	Completeness map evaluation demonstrated with candidate next-generation cardiac CT architectures. <i>Medical Physics</i> , 2012 , 39, 2405-16	4.4	17
268	A Reduced Radiation Dose CTA. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 184-189		
267	Optimization of K-edge imaging with spectral CT. <i>Medical Physics</i> , 2012 , 39, 6572-9	4.4	43
266	Medipix-based Spectral Micro-CT 2012 , 21, 583		2

Inverse fourier transform in the gamma coordinate system. International Journal of Biomedical

5.2

Imaging, 2011, 2011, 285130

248

247	Biomedical Imaging and Image Processing in Tissue Engineering 2011 , 155-178		1
246	A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation. <i>Biomedical Optics Express</i> , 2010 , 2, 44-57	3.5	26
245	Three-dimensional structure determination from a single view. <i>Nature</i> , 2010 , 463, 214-7	50.4	124
244	Multibeam field emission x-ray system with half-scan reconstruction algorithm. <i>Medical Physics</i> , 2010 , 37, 3773-81	4.4	O
243	Higher-order phase shift reconstruction approach. <i>Medical Physics</i> , 2010 , 37, 5238-42	4.4	7
242	Dose reduction with adaptive bolus chasing computed tomography angiography. <i>Journal of X-Ray Science and Technology</i> , 2010 , 18, 15-25	2.1	
241	Can interior tomography outperform lambda tomography?. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, E92-3, author reply E94-5	11.5	11
240	A soft-threshold filtering approach for reconstruction from a limited number of projections. <i>Physics in Medicine and Biology</i> , 2010 , 55, 3905-16	3.8	143
239	High Order Total Variation Minimization for Interior Tomography. <i>Inverse Problems</i> , 2010 , 26, 350131-3	35 <u>0</u> .332	9 89
238	SART-type image reconstruction from a limited number of projections with the sparsity constraint. <i>International Journal of Biomedical Imaging</i> , 2010 , 2010, 934847	5.2	26
237	Compressed sensing inspired image reconstruction from overlapped projections. <i>International Journal of Biomedical Imaging</i> , 2010 , 2010,	5.2	2
236	Recent progress in local reconstruction 2010 ,		1
236	Recent progress in local reconstruction 2010, Overview of multisource CT systems and methods 2010,		2
235	Overview of multisource CT systems and methods 2010 ,	3.8	2
235	Overview of multisource CT systems and methods 2010, Statistical interior tomography 2010, A parallel adaptive finite element simplified spherical harmonics approximation solver for	3.8	5
235 234 233	Overview of multisource CT systems and methods 2010, Statistical interior tomography 2010, A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging. <i>Physics in Medicine and Biology</i> , 2010, 55, 4625-45		2 5 35

229	PARAMETRIC STUDY OF TISSUE OPTICAL CLEARING BY LOCALIZED MECHANICAL COMPRESSION USING COMBINED FINITE ELEMENT AND MONTE CARLO SIMULATION. <i>Journal of Innovative Optical Health Sciences</i> , 2010 , 3, 203-211	1.2	5
228	A novel approach for studies of multispectral bioluminescence tomography. <i>Numerische Mathematik</i> , 2010 , 115, 553-583	2.2	6
227	Adaptive bolus chasing computed tomography angiography by a local linear time and space parameter varying model: modeling, control, identification, and experimental results. Frontiers of Electrical and Electronic Engineering in China: Selected Publications From Chinese Universities, 2010,		
226	5, 119-127 Differential evolution approach for regularized bioluminescence tomography. <i>IEEE Transactions on Biomedical Engineering</i> , 2010 , 57, 2229-38	5	24
225	Fast exact/quasi-exact FBP algorithms for triple-source helical cone-beam CT. <i>IEEE Transactions on Medical Imaging</i> , 2010 , 29, 756-70	11.7	6
224	A scheme for multisource interior tomography. <i>Medical Physics</i> , 2009 , 36, 3575-81	4.4	41
223	Compressive sampling based interior reconstruction for dynamic carbon nanotube micro-CT. Journal of X-Ray Science and Technology, 2009 , 17, 295-303	2.1	15
222	A general total variation minimization theorem for compressed sensing based interior tomography. <i>International Journal of Biomedical Imaging</i> , 2009 , 2009, 125871	5.2	24
221	Line-source based x-ray tomography. <i>International Journal of Biomedical Imaging</i> , 2009 , 2009, 534516	5.2	2
220	Compressed sensing based interior tomography. <i>Physics in Medicine and Biology</i> , 2009 , 54, 2791-805	3.8	349
219	Preliminary experimental results on controlled cardiac computed tomography: a phantom study. Journal of X-Ray Science and Technology, 2009 , 17, 175-87	2.1	2
218	Temperature-change-based thermal tomography. <i>International Journal of Biomedical Imaging</i> , 2009 , 2009, 464235	5.2	3
217	Supplemental analysis on compressed sensing based interior tomography. <i>Physics in Medicine and Biology</i> , 2009 , 54, N425-32	3.8	48
216	Studies of a mathematical model for temperature-modulated bioluminescence tomography. <i>Applicable Analysis</i> , 2009 , 88, 193-213	0.8	2
215	Elastography method for reconstruction of nonlinear breast tissue properties. <i>International Journal of Biomedical Imaging</i> , 2009 , 2009, 406854	5.2	19
214	Varying collimation for dark-field extraction. <i>International Journal of Biomedical Imaging</i> , 2009 , 2009, 847537	5.2	1
213	A filtered backprojection algorithm for triple-source helical cone-beam CT. <i>IEEE Transactions on Medical Imaging</i> , 2009 , 28, 384-93	11.7	15
212	An integrated solution and analysis of bioluminescence tomography and diffuse optical tomography. <i>Communications in Numerical Methods in Engineering</i> , 2009 , 25, 639-656		4

(2008-2009)

211	Computational methods for optical molecular imaging. <i>Communications in Numerical Methods in Engineering</i> , 2009 , 25, 1137-1161		8
210	Modeling and reconstruction of diffuse optical tomography using adjoint method. <i>Communications in Numerical Methods in Engineering</i> , 2009 , 25, 657-665		4
209	Interior SPECT- Exact and Stable ROI Reconstruction from Uniformly Attenuated Local Projections. <i>Communications in Numerical Methods in Engineering</i> , 2009 , 25, 693-710		15
208	Adaptive Bolus-chasing Computed Tomography Angiography in the Cases of Symmetric and Asymmetric Arterial Flows in Peripheral Arteries. <i>Biomedical Signal Processing and Control</i> , 2009 , 4, 302-	308	2
207	Parallelism of iterative CT reconstruction based on local reconstruction algorithm. <i>Journal of Supercomputing</i> , 2009 , 48, 1-14	2.5	6
206	Exact image reconstruction with triple-source saddle-curve cone-beam scanning. <i>Physics in Medicine and Biology</i> , 2009 , 54, 2971-91	3.8	4
205	Ultra-low dose lung CT perfusion regularized by a previous scan. <i>Academic Radiology</i> , 2009 , 16, 363-73	4.3	52
204	Demonstration of dose and scatter reductions for interior computed tomography. <i>Journal of Computer Assisted Tomography</i> , 2009 , 33, 967-72	2.2	6
203	Cardiac computed tomography radiation dose reduction using interior reconstruction algorithm with the aorta and vertebra as known information. <i>Journal of Computer Assisted Tomography</i> , 2009 , 33, 338-47	2.2	5
202	Exact and stable interior ROI reconstruction for radial MRI 2009,		2
201	Determination of exact reconstruction regions in composite-circling cone-beam tomography. <i>Medical Physics</i> , 2009 , 36, 3448-54	4.4	1
200	An outlook on x-ray CT research and development. <i>Medical Physics</i> , 2008 , 35, 1051-64	4.4	166
199	Digital spectral separation methods and systems for bioluminescence imaging. <i>Optics Express</i> , 2008 , 16, 1719-32	3.3	11
198	An Adaptive Optimal Control Design for a Bolus Chasing Computed Tomography Angiography. <i>IEEE Transactions on Control Systems Technology</i> , 2008 , 16, 60-69	4.8	6
197	X-ray phase-contrast imaging with 2D grating interferometry 2008 ,		1
196	Exact image reconstruction for triple-source cone-beam CT along saddle trajectories 2008,		1
195	Convex analysis and separation of composite signals in DCE-MRI 2008,		1
194	X-ray phase-contrast imaging with three 2D gratings. <i>International Journal of Biomedical Imaging</i> , 2008 , 2008, 827152	5.2	20

193	Digital eversion of a hollow structure: an application in virtual colonography. <i>International Journal of Biomedical Imaging</i> , 2008 , 2008, 763028	5.2	6
192	Exact interior reconstruction from truncated limited-angle projection data. <i>International Journal of Biomedical Imaging</i> , 2008 , 2008, 427989	5.2	40
191	Integral equations of the photon fluence rate and flux based on a generalized Delta-Eddington phase function. <i>Journal of Biomedical Optics</i> , 2008 , 13, 024016	3.5	11
190	Adaptive Bolus Chasing Computed Tomography Angiography. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 6648-6653		
189	Knowledge-based dynamic volumetric cardiac computed tomography with saddle curve trajectory. Journal of Computer Assisted Tomography, 2008 , 32, 942-50	2.2	2
188	In situ real-time chemiluminescence imaging of reactive oxygen species formation from cardiomyocytes. <i>International Journal of Biomedical Imaging</i> , 2008 , 2008, 941729	5.2	3
187	A General Scheme for Velocity Tomography. Signal Processing, 2008, 88, 1165-1175	4.4	3
186	Analysis on the strip-based projection model for discrete tomography. <i>Discrete Applied Mathematics</i> , 2008 , 156, 2359-2367	1	16
185	Adaptive Bolus Chasing Computed Tomography Angiography: Control Scheme and Experimental Results. <i>Biomedical Signal Processing and Control</i> , 2008 , 3, 319-326	4.9	5
184	An in vitro evaluation of cone-beam breast CT methods. <i>Journal of X-Ray Science and Technology</i> , 2008 , 16, 171-187	2.1	3
183	Interior Reconstruction Using the Truncated Hilbert Transform via Singular Value Decomposition. <i>Journal of X-Ray Science and Technology</i> , 2008 , 16, 243-251	2.1	38
182	Bioluminescence Tomography: Biomedical Background, Mathematical Theory, and Numerical Approximation. <i>Journal of Computational Mathematics</i> , 2008 , 26, 324-335	2.1	6
181	Overview of bioluminescence tomographya new molecular imaging modality. <i>Frontiers in Bioscience - Landmark</i> , 2008 , 13, 1281-93	2.8	39
180	Data consistency based rigid motion artifact reduction in fan-beam CT. <i>IEEE Transactions on Medical Imaging</i> , 2007 , 26, 249-60	11.7	55
179	Lambda tomography with discontinuous scanning trajectories. <i>Physics in Medicine and Biology</i> , 2007 , 52, 4331-44	3.8	8
178	Exact interior reconstruction with cone-beam CT. <i>International Journal of Biomedical Imaging</i> , 2007 , 2007, 10693	5.2	37
177	Cone-beam composite-circling scan and exact image reconstruction for a quasi-short object. <i>International Journal of Biomedical Imaging</i> , 2007 , 2007, 87319	5.2	5
176	Experimental study on bioluminescence tomography with multimodality fusion. <i>International Journal of Biomedical Imaging</i> , 2007 , 2007, 86741	5.2	9

(2007-2007)

175	Improving the accuracy of the diffusion model in highly absorbing media. <i>International Journal of Biomedical Imaging</i> , 2007 , 2007, 38168	5.2	5
174	A comparative study on interpolation methods for controlled cardiac CT. <i>International Journal of Imaging Systems and Technology</i> , 2007 , 17, 91-98	2.5	5
173	Theoretical and numerical analysis on multispectral bioluminescence tomography. <i>IMA Journal of Applied Mathematics</i> , 2007 , 72, 67-85	1	19
172	A general formula for fan-beam lambda tomography. <i>International Journal of Biomedical Imaging</i> , 2007 , 2007, 95295	5.2	2
171	A fast CT reconstruction scheme for a general multi-core PC. <i>International Journal of Biomedical Imaging</i> , 2007 , 2007, 29160	5.2	16
170	Approximate and exact cone-beam reconstruction with standard and non-standard spiral scanning. <i>Physics in Medicine and Biology</i> , 2007 , 52, R1-13	3.8	37
169	Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation. <i>Physics in Medicine and Biology</i> , 2007 , 52, 4497-512	3.8	78
168	Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function. <i>Physical Review E</i> , 2007 , 76, 051913	2.4	21
167	Bioluminescence tomography with optimized optical parameters. <i>Inverse Problems</i> , 2007 , 23, 1215-1228	82.3	17
166	Cone-beam pseudo-lambda tomography. <i>Inverse Problems</i> , 2007 , 23, 203-215	2.3	13
165	Selectable source rotational velocity for cardiac computed tomography. <i>Journal of Computer Assisted Tomography</i> , 2007 , 31, 16-21	2.2	2
164	Bolus chasing computed tomography angiography using local maximum tracking method. <i>International Journal of Modelling, Identification and Control</i> , 2007 , 2, 305	0.6	
163	Digital tomosynthesis aided by low-resolution exact computed tomography. <i>Journal of Computer Assisted Tomography</i> , 2007 , 31, 976-83	2.2	5
162	Flux vector formulation for photon propagation in the biological tissue. <i>Optics Letters</i> , 2007 , 32, 2837-9	3	14
161	Numerical study on the validity of the diffusion approximation for computational optical biopsy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2007 , 24, 423-9	1.8	3
160	Image reconstruction for bioluminescence tomography from partial measurement. <i>Optics Express</i> , 2007 , 15, 11095-116	3.3	43
159	A segmentation-based method for metal artifact reduction. <i>Academic Radiology</i> , 2007 , 14, 495-504	4.3	69
158	A general local reconstruction approach based on a truncated hilbert transform. <i>International Journal of Biomedical Imaging</i> , 2007 , 2007, 63634	5.2	96

157	MicroCT-guided bioluminescence tomography based on the adaptive finite element tomographic algorithm. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2006 , 2006, 381-4		5
156	Boundary integral method for bioluminescence tomography. <i>Journal of Biomedical Optics</i> , 2006 , 11, 020	503	22
155	Studies on Palamodov's algorithm for cone-beam CT along a general curve. <i>Inverse Problems</i> , 2006 , 22, 447-460	2.3	4
154	A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection. <i>Physics in Medicine and Biology</i> , 2006 , 51, 5643-54	3.8	9
153	Reply to the comment on B tudies on Palamodov's algorithm for cone-beam CT along a general curve[] <i>Inverse Problems</i> , 2006 , 22, 1505-1506	2.3	2
152	Multispectral bioluminescence tomography: methodology and simulation. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 57614	5.2	38
151	Elasto-mammography: Theory, Algorithm, and Phantom Study. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 53050	5.2	5
150	Evolution-operator-based single-step method for image processing. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 83847	5.2	14
149	The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 58601	5.2	23
148	Message from the Editor-in-Chief. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 81409	5.2	O
147	Anisotropic elastography for local passive properties and active contractility of myocardium from dynamic heart imaging sequence. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 45957	5.2	10
146	Mathematical study and numerical simulation of multispectral bioluminescence tomography. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 54390	5.2	10
145	A general formula for fan-beam lambda tomography. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 10427	5.2	10
144	Controlled cardiac computed tomography. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 128	19.2	3
143	Review of Parallel Computing Techniques for Computed Tomography Image Reconstruction. <i>Current Medical Imaging</i> , 2006 , 2, 405-414	1.2	10
142	Recent Development in Bioluminescence Tomography. Current Medical Imaging, 2006, 2, 453-457	1.2	21
141	A born-type approximation method for bioluminescence tomography. <i>Medical Physics</i> , 2006 , 33, 679-86	4.4	39
140	Cone-beam mammo-computed tomography from data along two tilting arcs. <i>Medical Physics</i> , 2006 , 33, 3621-33	4.4	9

139	Practical cone-beam lambda tomography. <i>Medical Physics</i> , 2006 , 33, 3640-6	4.4	10
138	Data consistency based translational motion artifact reduction in fan-beam CT. <i>IEEE Transactions on Medical Imaging</i> , 2006 , 25, 792-803	11.7	38
137	Integral Invariants for Computed Tomography. IEEE Signal Processing Letters, 2006, 13, 549-552	3.2	9
136	A General Exact Method for Synthesizing Parallel-beam Projections from Cone-beam Projections by Filtered Backprojection 2006 ,		1
135	Reduction of half-scan shading artifact based on full-scan correction. <i>Academic Radiology</i> , 2006 , 13, 55-	64 .3	10
134	Bolus characteristics based on Magnetic Resonance Angiography. <i>BioMedical Engineering OnLine</i> , 2006 , 5, 53	4.1	7
133	In vivo mouse studies with bioluminescence tomography. <i>Optics Express</i> , 2006 , 14, 7801-9	3.3	143
132	Temperature-modulated bioluminescence tomography. <i>Optics Express</i> , 2006 , 14, 7852-71	3.3	30
131	A multilevel adaptive finite element algorithm for bioluminescence tomography. <i>Optics Express</i> , 2006 , 14, 8211-23	3.3	132
130	Local ROI Reconstruction via Generalized FBP and BPF Algorithms along More Flexible Curves. <i>International Journal of Biomedical Imaging</i> , 2006 , 2006, 14989	5.2	17
129	Rotational velocity control for cardiac CT 2006 ,		1
128	Image reconstruction via truncated lambda tomography 2006 , 6318, 491		
127	Modeling the forward problem based on the adaptive FEMs framework in bioluminescence tomography 2006 ,		3
126	Simulation studies for triple-source helical cone-beam CT 2006 ,		1
125	Skew cone beam lambda tomography 2006 ,		1
124	General formulation for X-ray computed tomography 2006,		1
123	Geometrical study on two tilting arcs based exact cone-beam CT for breast imaging 2006 , 6318, 509		
122	Mathematical theory and numerical analysis of bioluminescence tomography. <i>Inverse Problems</i> , 2006 , 22, 1659-1675	2.3	52

Exact reconstruction for unequally spaced triple-source helical cone-beam CT **2006**, 6318, 546

120	Projection-based bolus detection for computed tomographic angiography. <i>Journal of Computer Assisted Tomography</i> , 2006 , 30, 846-9	2.2	2
119	Localizing source distribution based on the adaptive finite element methods for bioluminescence tomography 2006 , 6318, 500		1
118	Development of bioluminescence tomography 2006 , 6318, 104		
117	Error analysis on a generalized Feldkamp's cone-beam computed tomography algorithm. <i>Scanning</i> , 2006 , 17, 361-370	1.6	9
116	A general axiomatic system for image resolution quantification. <i>Journal of Mathematical Analysis and Applications</i> , 2006 , 315, 462-473	1.1	1
115	A Parallel Implementation of the Katsevich Algorithm for 3-D CT Image Reconstruction. <i>Journal of Supercomputing</i> , 2006 , 38, 35-47	2.5	12
114	Inverse Problems in Bioluminescence Tomography. <i>Series in Contemporary Applied Mathematics</i> , 2006 , 114-148	Ο	2
113	Study of an adaptive bolus chasing CT angiography. <i>Journal of X-Ray Science and Technology</i> , 2006 , 14, 27-38	2.1	4
112	Design, analysis and simulation for development of the first clinical micro-CT scanner. <i>Academic Radiology</i> , 2005 , 12, 511-25	4.3	30
111	Tomography-based 3-D anisotropic elastography using boundary measurements. <i>IEEE Transactions on Medical Imaging</i> , 2005 , 24, 1323-33	11.7	30
110	Practical reconstruction method for bioluminescence tomography. <i>Optics Express</i> , 2005 , 13, 6756-71	3.3	236
109	A finite-element-based reconstruction method for 3D fluorescence tomography. <i>Optics Express</i> , 2005 , 13, 9847-57	3.3	88
108	Computational optical biopsy. <i>BioMedical Engineering OnLine</i> , 2005 , 4, 36	4.1	5
107	A general exact reconstruction for cone-beam CT via backprojection-filtration. <i>IEEE Transactions on Medical Imaging</i> , 2005 , 24, 1190-8	11.7	68
106	A unified framework for exact cone-beam reconstruction formulas. <i>Medical Physics</i> , 2005 , 32, 1712-21	4.4	38
105	Filtered backprojection formula for exact image reconstruction from cone-beam data along a general scanning curve. <i>Medical Physics</i> , 2005 , 32, 42-8	4.4	47
104	Geometrical modeling using multiregional marching tetrahedra for bioluminescence tomography 2005 ,		3

(2004-2005)

103	Axiomatic characterization of nonlinear homomorphic means. <i>Journal of Mathematical Analysis and Applications</i> , 2005 , 303, 350-363	1.1	7
102	Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images. <i>Forensic Science International</i> , 2005 , 155, 28-34	2.6	76
101	An intuitive discussion on the ideal ramp filter in computed tomography (I). <i>Computers and Mathematics With Applications</i> , 2005 , 49, 731-740	2.7	17
100	A differentiable Shepp-Logan phantom and its applications in exact cone-beam CT. <i>Physics in Medicine and Biology</i> , 2005 , 50, 5583-95	3.8	16
99	A backprojection-filtration algorithm for nonstandard spiral cone-beam CT with an n-PI-window. <i>Physics in Medicine and Biology</i> , 2005 , 50, 2099-111	3.8	29
98	Exact BPF and FBP algorithms for nonstandard saddle curves. <i>Medical Physics</i> , 2005 , 32, 3305-12	4.4	26
97	Computed tomography simulation with superquadrics. <i>Medical Physics</i> , 2005 , 32, 3136-43	4.4	13
96	General formula for fan-beam computed tomography. <i>Physical Review Letters</i> , 2005 , 95, 258102	7.4	5
95	PI-line-based image reconstruction in helical cone-beam computed tomography with a variable pitch. <i>Medical Physics</i> , 2005 , 32, 2639-48	4.4	19
94	Relation between the filtered backprojection algorithm and the backprojection algorithm in CT. <i>IEEE Signal Processing Letters</i> , 2005 , 12, 633-636	3.2	8
93	A Reconstruction Algorithm for Triple-Source Helical Cone-Beam CT. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2005 , 2005, 1875-8		
92	Parallel Iterative CT Image Reconstruction on a Linux Cluster of Legacy Computers 2005 , 369-373		
91	Minimum detection windows, PI-line existence and uniqueness for helical cone-beam scanning of variable pitch. <i>Medical Physics</i> , 2004 , 31, 566-72	4.4	18
90	Feldkamp-type VOI reconstruction from super-short-scan cone-beam data. <i>Medical Physics</i> , 2004 , 31, 1357-62	4.4	26
89	An error-reduction-based algorithm for cone-beam computed tomography. <i>Medical Physics</i> , 2004 , 31, 3206-12	4.4	21
88	Uniqueness theorems in bioluminescence tomography. <i>Medical Physics</i> , 2004 , 31, 2289-99	4.4	188
87	Geometric studies on variable radius spiral cone-beam scanning. <i>Medical Physics</i> , 2004 , 31, 1473-80	4.4	14
86	Minimum detection window and inter-helix PI-line with triple-source helical cone-beam scanning 2004 ,		3

0	Three-dimensional localization of cochlear implant electrodes using epipolar		
85	stereophotogrammetry. <i>IEEE Transactions on Biomedical Engineering</i> , 2004 , 51, 838-46	5	4
84	Modeling of elastic modulus evolution of cirrhotic human liver. <i>IEEE Transactions on Biomedical Engineering</i> , 2004 , 51, 1854-6	5	14
83	The comprehensive imaging-based analysis of the lung: a forum for team science. <i>Academic Radiology</i> , 2004 , 11, 1370-80	4.3	52
82	A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. <i>Academic Radiology</i> , 2004 , 11, 1029-38	4.3	102
81	Fractional scan algorithms for low-dose perfusion CT. <i>Medical Physics</i> , 2004 , 31, 1254-7	4.4	17
80	Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium. <i>BioMedical Engineering OnLine</i> , 2004 , 3, 12	4.1	18
79	Grangeat-type helical half-scan computerized tomography algorithm for reconstruction of a short object. <i>Medical Physics</i> , 2004 , 31, 4-16	4.4	5
78	A practical method to determine the light source distribution in bioluminescent imaging 2004,		18
77	Studies on artifacts of the Katsevich algorithm for spiral cone-beam CT 2004,		7
76	Katsevich-type algorithims for variable radius spiral cone-beam CT 2004 ,		13
75	Image reconstruction for bioluminescence tomography 2004,		9
74	A family of analytic algorithms for cone-beam CT 2004 ,		9
73	Exact reconstruction for cone-beam scanning along nonstandard spirals and other curves 2004,		16
72	Numerical studies on Feldkamp-type and Katsevich-type algorithms for cone-beam scanning along nonstandard spirals 2004 ,		1
71	EM Medical Image Reconstruction in a Peer-to-Peer Systems. <i>Lecture Notes in Computer Science</i> , 2004 , 495-501	0.9	1
70	Automatic measurement of the labyrinth using image registration and a deformable inner ear atlas. <i>Academic Radiology</i> , 2003 , 10, 988-99	4.3	12
69	Convergence studies on iterative algorithms for image reconstruction. <i>IEEE Transactions on Medical Imaging</i> , 2003 , 22, 569-79	11.7	154

(2000-2003)

67	Spatial variation of resolution and noise in multi-detector row spiral CT. <i>Academic Radiology</i> , 2003 , 10, 607-13	4.3	23
66	Convergence of the simultaneous algebraic reconstruction technique (SART). <i>IEEE Transactions on Image Processing</i> , 2003 , 12, 957-61	8.7	135
65	Analytic modeling of breast elastography. <i>Medical Physics</i> , 2003 , 30, 2340-9	4.4	28
64	X-ray micro-CT with a displaced detector array: application to helical cone-beam reconstruction. <i>Medical Physics</i> , 2003 , 30, 2758-61	4.4	11
63	A Grangeat-type half-scan algorithm for cone-beam CT. Medical Physics, 2003, 30, 689-700	4.4	21
62	Blind deblurring of spiral CT images-comparative studies on edge-to-noise ratios. <i>Medical Physics</i> , 2002 , 29, 821-9	4.4	13
61	X-ray micro-CT with a displaced detector array. <i>Medical Physics</i> , 2002 , 29, 1634-6	4.4	61
60	Axiomatic quantification of multidimensional image resolution. <i>IEEE Signal Processing Letters</i> , 2002 , 9, 120-122	3.2	3
59	A knowledge-based cone-beam x-ray CT algorithm for dynamic volumetric cardiac imaging. <i>Medical Physics</i> , 2002 , 29, 1807-22	4.4	31
58	Artifacts associated with implementation of the Grangeat formula. <i>Medical Physics</i> , 2002 , 29, 2871-80	4.4	10
57	Localization error analysis for stereo X-ray image guidance with probability method. <i>Medical Engineering and Physics</i> , 2001 , 23, 573-81	2.4	2
56	Convergence of the simultaneous algebraic reconstruction technique (SART) 2001,		4
55	Half-scan cone-beam CT fluoroscopy with multiple x-ray sources. <i>Medical Physics</i> , 2001 , 28, 1466-71	4.4	40
54	Model of intravenous bolus propagation for optimization of contrast enhancement 2000 , 3978, 436		5
53	Digital X-ray stereophotogrammetry for cochlear implantation. <i>IEEE Transactions on Biomedical Engineering</i> , 2000 , 47, 1120-30	5	5
52	Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. <i>IEEE Transactions on Biomedical Engineering</i> , 2000 , 47, 1392-402	5	38
51	Three-dimensional modeling and visualization of the cochlea on the Internet. <i>IEEE Transactions on Information Technology in Biomedicine</i> , 2000 , 4, 144-51		24
50	Optimal section spacing in single-detector helical CT. <i>Radiology</i> , 2000 , 214, 575-8	20.5	15

49	Design of a dual CCD configuration to improve the signal-to-noise ratio. <i>Medical Physics</i> , 2000 , 27, 2435	- 4.4	4
48	Feldkamp-type cone-beam tomography in the wavelet framework. <i>IEEE Transactions on Medical Imaging</i> , 2000 , 19, 922-9	11.7	17
47	A localization algorithm and error analysis for stereo x-ray image guidance. <i>Medical Physics</i> , 2000 , 27, 885-93	4.4	8
46	Localization of cochlear implant electrodes in radiographs. <i>Medical Physics</i> , 2000 , 27, 775-7	4.4	7
45	X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses. <i>IEEE Transactions on Medical Imaging</i> , 2000 , 19, 1238-47	11.7	173
44	Distortion reduction for fast soft straightening of the colon. <i>Academic Radiology</i> , 2000 , 7, 506-15	4.3	4
43	Fast iterative algorithm for metal artifact reduction in X-ray CT. Academic Radiology, 2000, 7, 607-14	4.3	102
42	Fast algorithm for soft straightening of the colon. <i>Academic Radiology</i> , 2000 , 7, 142-8	4.3	10
41	Exact and Approximate Cone-Beam X-ray Microtomography 1999 , 233-261		4
40	The effect of pitch in multislice spiral/helical CT. <i>Medical Physics</i> , 1999 , 26, 2648-53	4.4	43
39	Iterative X-ray Cone-Beam Tomography for Metal Artifact Reduction and Local Region Reconstruction. <i>Microscopy and Microanalysis</i> , 1999 , 5, 58-65	0.5	98
38	Interpolation algorithms for digital mammography systems with multiple detectors. <i>Academic Radiology</i> , 1999 , 6, 170-5	4.3	2
37	Axiomatic approach for quantification of image resolution. <i>IEEE Signal Processing Letters</i> , 1999 , 6, 257-2	2.5382	14
36	Straightening the colon with curved cross sections: an approach to CT colonography. <i>Academic Radiology</i> , 1999 , 6, 398-410	4.3	23
35	Adaptive image interpolation for full-field digital x-ray mammography. <i>Applied Optics</i> , 1999 , 38, 253-7	1.7	1
34	Computerized Tomography 1999 ,		2
33	Techniques of CT colonography (virtual colonoscopy). <i>Critical Reviews in Biomedical Engineering</i> , 1999 , 27, 1-25	1.1	4
32	New X-Ray Imaging Strategies: Implication for Cochlear Implantation 1999 , 1569-1573		

31	GI tract unraveling with curved cross sections. IEEE Transactions on Medical Imaging, 1998, 17, 318-22	11.7	71
30	Spiral CT image deblurring for cochlear implantation. <i>IEEE Transactions on Medical Imaging</i> , 1998 , 17, 251-62	11.7	54
29	An iterative algorithm for X-ray CT fluoroscopy. <i>IEEE Transactions on Medical Imaging</i> , 1998 , 17, 853-6	11.7	16
28	Radiologic volumetry on a personal computer with a stereologic method. <i>Academic Radiology</i> , 1998 , 5, 665-9	4.3	2
27	Wavelet filtering algorithm for fan-beam CT. <i>Electronics Letters</i> , 1998 , 34, 2395	1.1	3
26	Experimental System for X-ray Cone-Beam Microtomography. <i>Microscopy and Microanalysis</i> , 1998 , 4, 56-62	0.5	1
25	Low-contrast resolution in volumetric x-ray CTanalytical comparison between conventional and spiral CT. <i>Medical Physics</i> , 1997 , 24, 373-6	4.4	16
24	Optimal pitch in spiral computed tomography. <i>Medical Physics</i> , 1997 , 24, 1635-9	4.4	27
23	Spiral CT: current status and future directions 1997 , 3149, 203		3
22	Wavelet operators and their applications in computerized tomography 1997,		5
22	Wavelet operators and their applications in computerized tomography 1997 , Spiral computed tomographic colonography: determination of the central axis and digital unraveling of the colon. <i>Academic Radiology</i> , 1997 , 4, 367-73	4.3	5 33
	Spiral computed tomographic colonography: determination of the central axis and digital	4.3	
21	Spiral computed tomographic colonography: determination of the central axis and digital unraveling of the colon. <i>Academic Radiology</i> , 1997 , 4, 367-73 Three-dimensional dental imaging by spiral CT. A progress report. <i>Oral Surgery Oral Medicine Oral</i>	1.8	33
21	Spiral computed tomographic colonography: determination of the central axis and digital unraveling of the colon. <i>Academic Radiology</i> , 1997 , 4, 367-73 Three-dimensional dental imaging by spiral CT. A progress report. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 1997 , 84, 561-70 Wavelet Sampling and Localization Schemes for the Radon Transform in Two Dimensions. <i>SIAM</i>		33
21 20 19	Spiral computed tomographic colonography: determination of the central axis and digital unraveling of the colon. <i>Academic Radiology</i> , 1997 , 4, 367-73 Three-dimensional dental imaging by spiral CT. A progress report. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 1997 , 84, 561-70 Wavelet Sampling and Localization Schemes for the Radon Transform in Two Dimensions. <i>SIAM Journal on Applied Mathematics</i> , 1997 , 57, 1749-1762 Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction. <i>Journal of</i>	1.8	336224
21 20 19	Spiral computed tomographic colonography: determination of the central axis and digital unraveling of the colon. <i>Academic Radiology</i> , 1997, 4, 367-73 Three-dimensional dental imaging by spiral CT. A progress report. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 1997, 84, 561-70 Wavelet Sampling and Localization Schemes for the Radon Transform in Two Dimensions. <i>SIAM Journal on Applied Mathematics</i> , 1997, 57, 1749-1762 Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction. <i>Journal of Computer Assisted Tomography</i> , 1997, 21, 293-8	1.8 2.2	33622484
21 20 19 18	Spiral computed tomographic colonography: determination of the central axis and digital unraveling of the colon. <i>Academic Radiology</i> , 1997 , 4, 367-73 Three-dimensional dental imaging by spiral CT. A progress report. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 1997 , 84, 561-70 Wavelet Sampling and Localization Schemes for the Radon Transform in Two Dimensions. <i>SIAM Journal on Applied Mathematics</i> , 1997 , 57, 1749-1762 Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction. <i>Journal of Computer Assisted Tomography</i> , 1997 , 21, 293-8 Maximum volume coverage in spiral computed tomography scanning. <i>Academic Radiology</i> , 1996 , 3, 423	1.8 2.2	33 62 24 84

13	Preliminary study on helical CT algorithms for patient motion estimation and compensation. <i>IEEE Transactions on Medical Imaging</i> , 1995 , 14, 205-11	11.7	21
12	Temporal bone volumetric image deblurring in spiral computed tomography scanning. <i>Academic Radiology</i> , 1995 , 2, 888-95	4.3	14
11	GI tract unraveling by spiral CT 1995 ,		12
10	Half-scan cone-beam x-ray microtomography formula. <i>Scanning</i> , 1994 , 16, 216-20	1.6	31
9	Spatial variation of section sensitivity profile in spiral computed tomography. <i>Medical Physics</i> , 1994 , 21, 1491-7	4.4	26
8	A derivative-free noncircular fan-beam reconstruction formula. <i>IEEE Transactions on Image Processing</i> , 1993 , 2, 543-7	8.7	5
7	Scanning cone-beam reconstruction algorithms for x-ray microtomography 1992 ,		22
6	Recent development in bioluminescence tomography		2
5	Convergence of iterative algorithms for image reconstruction		1
4	Scheme for Cheating Prevention in Online Exams during Social Distancing		3
3	Anti-cheating Online Exams by Minimizing the Cheating Gain		2
2	Medical Imaging634-712		2
1	Machine Learning for Tomographic Imaging		18