Gaurav Tiwari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/36675/publications.pdf

Version: 2024-02-01

759233 713466 32 456 12 21 h-index citations g-index papers 34 34 34 240 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crushing behavior of honeycomb structure: a review. International Journal of Crashworthiness, 2019, 24, 555-579.	1.9	71
2	Effect of target span and configuration on the ballistic limit. International Journal of Impact Engineering, 2012, 42, 11-24.	5.0	44
3	Ballistic performance and energy absorption characteristics of thin aluminium plates. International Journal of Impact Engineering, 2015, 77, 1-15.	5.0	44
4	Influence of reinforcement in the honeycomb structures under axial compressive load. Thin-Walled Structures, 2018, 126, 238-245.	5.3	32
5	Ballistic response of hemispherical sandwich shell structure against ogive nosed projectile. Thin-Walled Structures, 2020, 154, 106869.	5.3	27
6	Energy absorption and in-plane crushing behavior of aluminium reinforced honeycomb. Vacuum, 2019, 166, 364-369.	3.5	25
7	Energy absorption characteristics of thin aluminium plate against hemispherical nosed projectile impact. Thin-Walled Structures, 2018, 126, 246-257.	5.3	24
8	Ballistic performance and energy dissipation characteristics of cylindrical honeycomb sandwich structure. International Journal of Impact Engineering, 2022, 160, 104065.	5.0	24
9	Energy dissipation in thin metallic shells under projectile impact. European Journal of Mechanics, A/Solids, 2016, 59, 37-57.	3.7	23
10	Perforation and energy dissipation behaviour of honeycomb core cylindrical sandwich shell subjected to conical shape projectile at high velocity impact. Thin-Walled Structures, 2022, 171, 108724.	5.3	22
11	Crashworthiness analysis of multi-configuration thin walled co-axial frusta tube structures under quasi-static loading. Thin-Walled Structures, 2020, 154, 106872.	5.3	20
12	The ballistic resistance of thin aluminium plates with varying degrees of fixity along the circumference. International Journal of Impact Engineering, 2014, 74, 46-56.	5.0	17
13	Review of the crushing response of collapsible tubular structures. Frontiers of Mechanical Engineering, 2020, 15, 438-474.	4.3	14
14	Energy absorption characteristic of sandwich shell structure against conical and hemispherical nose projectile. Composite Structures, 2021, 258, 113396.	5.8	13
15	Ballistic response of double layered 1100-H12 aluminium hemispherical shell structure. Thin-Walled Structures, 2020, 148, 106619.	5.3	11
16	Effect of eccentricity and obliquity on the ballistic performance and energy dissipation of hemispherical shell subjected to ogive nosed. Thin-Walled Structures, 2021, 161, 107447.	5.3	11
17	Effect of cut-outs on the axial crushing response of cap and open-end hybrid frusta tube. Materials Today: Proceedings, 2020, 28, 2539-2546.	1.8	8
18	Effect of eccentric loading on energy absorbing circular cap and open end frusta tube structures. Vacuum, 2019, 166, 356-363.	3.5	6

#	Article	IF	CITATIONS
19	The Effect of Target Thickness on Ballistic Resistance of Thin Aluminium Plates. Materials Today: Proceedings, 2020, 21, 1999-2013.	1.8	5
20	Design refinements of synchronous reluctance motor utilising nonâ€magnetic radial ribs for traction applications. IET Electric Power Applications, 2020, 14, 2480-2489.	1.8	3
21	Effect of Configuration and Target Span on the Ballistic Resistance. Key Engineering Materials, 0, 535-536, 52-55.	0.4	2
22	Impact Response of Thin Aluminium Plate with Varying Projectile Obliquity and Span Diameter. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2020, 44, 93-102.	1.3	2
23	The Ballistic Performance of Thin Aluminium Plates Against Blunt-Nosed Projectile. Materials Today: Proceedings, 2020, 21, 1763-1771.	1.8	2
24	Numerical Study of Energy Absorption Behaviour of Thin Aluminium Hemispherical Shell against Projectile Impact. Materials Today: Proceedings, 2020, 21, 1958-1963.	1.8	2
25	Influence of Target Span and Boundary Conditions on Ballistic Limit of Thin Aluminum Plate. Procedia Engineering, 2017, 173, 169-174.	1.2	1
26	Impact response of thin aluminium plates and hemispherical shells. International Journal of Crashworthiness, 2019, 24, 413-428.	1.9	1
27	Finite Element Simulation of Ballistic Response of Metallic Sandwich Structures with Aluminium Foam Core. Lecture Notes in Mechanical Engineering, 2021, , 543-549.	0.4	1
28	Low-velocity impact response of layered frusta tube structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	1.6	1
29	Response of 1100-H12 Aluminum Targets to Varying Span and Configuration. Key Engineering Materials, 2013, 535-536, 539-542.	0.4	0
30	Effect of Periphery Fixity on Ballistic Limit of Thin Aluminum Plate Subjected to Blunt and Ogival Projectile Impact. International Journal of Applied Mechanics and Engineering, 2014, 19, 379-395.	0.7	0
31	Structural Response of Multi-Layered Aluminium Foam Core Sandwich Structure Against Blast Loading. Advanced Science, Engineering and Medicine, 2020, 12, 1378-1382.	0.3	0
32	Ballistic Response of Confined Ceramic/Metal Armor System Against Long Projectile. Advanced Science, Engineering and Medicine, 2020, 12, 1383-1387.	0.3	0