
Fabrizio Albanito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3667198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biology, 2018, 24, 5895-5908.	9.5	126
2	Direct Nitrous Oxide Emissions From Tropical And Sub-Tropical Agricultural Systems - A Review And Modelling Of Emission Factors. Scientific Reports, 2017, 7, 44235.	3.3	75
3	Bundle Sheath Leakiness and Light Limitation during C4 Leaf and Canopy CO2 Uptake Â. Plant Physiology, 2008, 148, 2144-2155.	4.8	64
4	Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenergy, 2016, 8, 81-95.	5.6	43
5	Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors. Environmental Pollution, 2020, 259, 113864.	7.5	38
6	Improving N2O emission estimates with the global N2O database. Current Opinion in Environmental Sustainability, 2020, 47, 13-20.	6.3	27
7	Re-assessing nitrous oxide emissions from croplands across Mainland China. Agriculture, Ecosystems and Environment, 2018, 268, 70-78.	5.3	26
8	Can biomass supply meet the demands of bioenergy with carbon capture and storage (BECCS)?. Global Change Biology, 2020, 26, 5358-5364.	9.5	25
9	Mitigation potential and environmental impact of centralized versus distributed BECCS with domestic biomass production in Great Britain. GCB Bioenergy, 2019, 11, 1234-1252.	5.6	23
10	Dual-chamber measurements of δ13C of soil-respired CO2 partitioned using a field-based three end-member model. Soil Biology and Biochemistry, 2012, 47, 106-115.	8.8	17
11	Systems approaches in global change and biogeochemistry research. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 311-321.	4.0	15
12	Model comparison and quantification of nitrous oxide emission and mitigation potential from maize and wheat fields at a global scale. Science of the Total Environment, 2021, 782, 146696.	8.0	14
13	Development and testing of a process-based model (MOSES) for simulating soil processes, functions and ecosystem services. Ecological Modelling, 2011, 222, 3795-3810.	2.5	11
14	Automated diffusion chambers to monitor diurnal and seasonal dynamics of the soil CO ₂ concentration profile. European Journal of Soil Science, 2009, 60, 507-514.	3.9	10
15	Responses of Irish Vegetation to Future Climate Change. Biology and Environment, 2006, 106, 323-334.	0.3	10
16	Projecting Soil C Under Future Climate and Land-Use Scenarios (Modeling). , 2018, , 281-309.		7
17	Mathematical Modeling of Greenhouse Gas Emissions from Agriculture for Different End Users. Advances in Agricultural Systems Modeling, 0, , 197-227.	0.3	4
18	Quantifying the land-based opportunity carbon costs of onshore wind farms. Journal of Cleaner Production, 2022, 363, 132480.	9.3	4

#	Article	IF	CITATIONS
19	Global high-resolution gridded dataset of N2O Emission and mitigation potential from maize and wheat fields. Data in Brief, 2021, 37, 107239.	1.0	3