
Bobak J Mortazavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3667008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of Digital Innovations for Diet Monitoring and Precision Nutrition. Journal of Diabetes Science and Technology, 2023, 17, 217-223.	2.2	23
2	Predicting the Macronutrient Composition of Mixed Meals From Dietary Biomarkers in Blood. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2726-2736.	6.3	2
3	A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations. Npj Digital Medicine, 2022, 5, 27.	10.9	9
4	Automated multilabel diagnosis on electrocardiographic images and signals. Nature Communications, 2022, 13, 1583.	12.8	29
5	PO-669-03 MACHINE LEARNING BASED ONE-YEAR MORTALITY PREDICTION IN PATIENTS UNDERGOING PRIMARY PREVENTION CARDIOVERTER DEFIBRILLATOR IMPLANTATION: A RETROSPECTIVE COHORT STUDY. Heart Rhythm, 2022, 19, S316-S317.	0.7	0
6	A Survey of Challenges and Opportunities in Sensing and Analytics for Risk Factors of Cardiovascular Disorders. ACM Transactions on Computing for Healthcare, 2021, 2, 1-42.	5.0	3
7	The Use of Telehealth Technology to Support Health Coaching for Older Adults: Literature Review. JMIR Human Factors, 2021, 8, e23796.	2.0	31
8	Temporal relationship of computed and structured diagnoses in electronic health record data. BMC Medical Informatics and Decision Making, 2021, 21, 61.	3.0	11
9	Use of Mechanical Circulatory Support Devices Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock. JAMA Network Open, 2021, 4, e2037748.	5.9	54
10	Clinical characteristics and outcomes for 7,995 patients with SARS-CoV-2 infection. PLoS ONE, 2021, 16, e0243291.	2.5	31
11	Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction. JAMA Cardiology, 2021, 6, 633.	6.1	116
12	Toward Dynamic Risk Prediction of Outcomes After Coronary Artery Bypass Graft: Improving Risk Prediction With Intraoperative Events Using Gradient Boosting. Circulation: Cardiovascular Quality and Outcomes, 2021, 14, e007363.	2.2	7
13	Real-time Mortality Prediction Using MIMIC-IV ICU Data Via Boosted Nonparametric Hazards. , 2021, , .		6
14	A Metric Learning Approach for Personalized Meal Macronutrient Estimation from Postprandial Glucose Response Signals. , 2021, , .		0
15	Postprandial concentration of circulating branched chain amino acids are able to predict the carbohydrate content of the ingested mixed meal. Clinical Nutrition, 2021, 40, 5020-5029.	5.0	2
16	Establishing a Global Standard for Wearable Devices in Sport and Exercise Medicine: Perspectives from Academic and Industry Stakeholders. Sports Medicine, 2021, 51, 2237-2250.	6.5	12
17	Assessing Performance of Machine Learning—Reply. JAMA Cardiology, 2021, 6, 1466.	6.1	1
18	Performance Metrics for the Comparative Analysis of Clinical Risk Prediction Models Employing Machine Learning. Circulation: Cardiovascular Quality and Outcomes, 2021, 14, e007526.	2.2	24

BOBAK J MORTAZAVI

#	Article	IF	CITATIONS
19	Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction. JACC: Heart Failure, 2020, 8, 12-21.	4.1	152
20	Recommendations for Reporting Machine Learning Analyses in Clinical Research. Circulation: Cardiovascular Quality and Outcomes, 2020, 13, e006556.	2.2	112
21	Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump for Cardiogenic Shock—Reply. JAMA - Journal of the American Medical Association, 2020, 324, 303.	7.4	8
22	Protocol for project recovery after cardiac surgery: a single-center cohort study leveraging digital platform to characterise longitudinal patient-reported postoperative recovery patterns. BMJ Open, 2020, 10, e036959.	1.9	2
23	Association of Use of an Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump With In-Hospital Mortality and Major Bleeding Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock. JAMA - Journal of the American Medical Association, 2020, 323, 734.	7.4	260
24	The National Institutes of Health funding for clinical research applying machine learning techniques in 2017. Npj Digital Medicine, 2020, 3, 13.	10.9	10
25	Using Intelligent Personal Annotations to Improve Human Activity Recognition for Movements in Natural Environments. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2639-2650.	6.3	6
26	BoXHED: Boosted eXact Hazard Estimator with Dynamic covariates. Proceedings of Machine Learning Research, 2020, 119, 9973-9982.	0.3	0
27	Developing Personalized Models of Blood Pressure Estimation from Wearable Sensors Data Using Minimally-trained Domain Adversarial Neural Networks. Proceedings of Machine Learning Research, 2020, 126, 97-120.	0.3	2
28	Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention. JAMA Network Open, 2019, 2, e196835.	5.9	60
29	A human-centered wearable sensing platform with intelligent automated data annotation capabilities. , 2019, , .		12
30	Phenotypes of Hypertensive Ambulatory Blood Pressure Patterns: Design and Rationale of the ECHORN Hypertension Study. Ethnicity and Disease, 2019, 29, 535-544.	2.3	7
31	Development and Validation of a Model for Predicting the Risk of Acute Kidney Injury Associated With Contrast Volume Levels During Percutaneous Coronary Intervention. JAMA Network Open, 2019, 2, e1916021.	5.9	25
32	Predicting the meal macronutrient composition from continuous glucose monitors. , 2019, , .		3
33	Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. PLoS Medicine, 2018, 15, e1002703.	8.4	91
34	A Survey on Smart Homes for Aging in Place: Toward Solutions to the Specific Needs of the Elderly. IEEE Signal Processing Magazine, 2018, 35, 111-119.	5.6	24
35	Interactive Dimensionality Reduction for Improving Patient Adherence in Remote Health Monitoring. , 2018, , .		4
36	Prediction of Adverse Events in Patients Undergoing Major Cardiovascular Procedures. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 1719-1729.	6.3	32

BOBAK J MORTAZAVI

#	Article	IF	CITATIONS
37	Analysis of Machine Learning Techniques for Heart Failure Readmissions. Circulation: Cardiovascular Quality and Outcomes, 2016, 9, 629-640.	2.2	245
38	Probabilistic segmentation of time-series audio signals using Support Vector Machines. Microprocessors and Microsystems, 2016, 46, 96-104.	2.8	7
39	User-optimized activity recognition for exergaming. Pervasive and Mobile Computing, 2016, 26, 3-16.	3.3	9
40	Objectively quantifying walking ability in degenerative spinal disorder patients using sensor equipped smart shoes. Medical Engineering and Physics, 2016, 38, 442-449.	1.7	33
41	A comparison of piezoelectric-based inertial sensing and audio-based detection of swallows. Obesity Medicine, 2016, 1, 6-14.	0.9	14
42	Improving biomedical signal search results in big data case-based reasoning environments. Pervasive and Mobile Computing, 2016, 28, 69-80.	3.3	7
43	Can Smartwatches Replace Smartphones for Posture Tracking?. Sensors, 2015, 15, 26783-26800.	3.8	54
44	The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis. PLoS ONE, 2015, 10, e0144552.	2.5	94
45	Multiple model recognition for near-realistic exergaming. , 2015, , .		1
46	Context-Aware Data Processing to Enhance Quality of Measurements in Wireless Health Systems: An Application to MET Calculation of Exergaming Actions. IEEE Internet of Things Journal, 2015, 2, 84-93.	8.7	16
47	Support vector regression to estimate the metabolic equivalent of task of exergaming actions. , 2014, , .		1
48	Designing a Robust Activity Recognition Framework for Health and Exergaming Using Wearable Sensors. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 1636-1646.	6.3	85
49	Near-Realistic Mobile Exergames With Wireless Wearable Sensors. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 449-456.	6.3	24
50	Multi-dimensional signal search with applications in remote medical monitoring. , 2013, , .		2
51	Robust human intensity-varying activity recognition using Stochastic Approximation in wearable sensors. , 2013, , .		17
52	MET calculations from on-body accelerometers for exergaming movements. , 2013, , .		13
53	Near-Realistic Motion Video Games with Enforced Activity. , 2012, , .		12
54	A Monte Carlo approach to biomedicai time series search. , 2012, 2012, 71-76.		2

3

#	Article	IF	CITATIONS
55	Aggregated Indexing of Biomedical Time Series Data. , 2012, 2012, 23-30.		1

56 Dynamic Task Optimization in Remote Diabetes Monitoring Systems. , 2012, 2012, 3-11.