Dongchang Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/3666843/dongchang-chen-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

55	5,262	35	55
papers	citations	h-index	g-index
55	6,032 ext. citations	15.3	5.69
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
55	Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. <i>Nano Letters</i> , 2013 , 13, 3135-9	11.5	888
54	Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. <i>Nano Energy</i> , 2015 , 11, 154-161	17.1	329
53	Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. <i>Nano Energy</i> , 2015 , 16, 71-80	17.1	292
52	Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. <i>Energy and Environmental Science</i> , 2016 , 9, 595-603	35.4	257
51	A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. <i>Nature Communications</i> , 2017 , 8, 14586	17.4	251
50	Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study. <i>Nano Energy</i> , 2016 , 26, 66-73	17.1	238
49	Rational Design of Nickel Hydroxide-Based Nanocrystals on Graphene for Ultrafast Energy Storage. <i>Advanced Energy Materials</i> , 2018 , 8, 1702247	21.8	172
48	Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with highlenergy and power density. <i>Nano Energy</i> , 2017 , 33, 522-531	17.1	167
47	Crosslinking Graphene Oxide into Robust 3D Porous N-Doped Graphene. <i>Advanced Materials</i> , 2015 , 27, 5171-5	24	165
46	Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. <i>ACS Applied Materials & Acs amp; Interfaces</i> , 2013 , 5, 11159-62	9.5	162
45	A high-performance supercapacitor electrode based on N-doped porous graphene. <i>Journal of Power Sources</i> , 2018 , 387, 43-48	8.9	152
44	A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. <i>Energy and Environmental Science</i> , 2017 , 10, 964-971	35.4	145
43	Probing the Charge Storage Mechanism of a Pseudocapacitive MnO2 Electrode Using in Operando Raman Spectroscopy. <i>Chemistry of Materials</i> , 2015 , 27, 6608-6619	9.6	141
42	Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy. <i>Nano Energy</i> , 2014 , 9, 161-167	17.1	138
41	Functionalized Bimetallic Hydroxides Derived from Metal©rganic Frameworks for High-Performance Hybrid Supercapacitor with Exceptional Cycling Stability. <i>ACS Energy Letters</i> , 2017 , 2, 1263-1269	20.1	128
40	Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2015 , 7, 24622-8	9.5	125
39	A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. <i>Energy Storage Materials</i> , 2017 , 7, 32-39	19.4	124

(2013-2017)

38	Unraveling the Nature of Anomalously Fast Energy Storage in T-NbO. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7071-7081	16.4	118
37	Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. <i>Nano Energy</i> , 2015 , 11, 64-70	17.1	107
36	Systematic study on structural and electronic properties of diamine/triamine functionalized graphene networks for supercapacitor application. <i>Nano Energy</i> , 2017 , 31, 183-193	17.1	99
35	A Scalable Free-Standing V2O5/CNT Film Electrode for Supercapacitors with a Wide Operation Voltage (1.6 V) in an Aqueous Electrolyte. <i>Advanced Functional Materials</i> , 2016 , 26, 6114-6120	15.6	88
34	One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. <i>NPG Asia Materials</i> , 2016 , 8, e300-e300	10.3	69
33	Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo-capacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7709	13	64
32	An In Situ Formed, Dual-Phase Cathode with a Highly Active Catalyst Coating for Protonic Ceramic Fuel Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1704907	15.6	59
31	Unravelling Solid-State Redox Chemistry in Li1.3Nb0.3Mn0.4O2 Single-Crystal Cathode Material. <i>Chemistry of Materials</i> , 2018 , 30, 1655-1666	9.6	58
30	Probing Structural Evolution and Charge Storage Mechanism of NiOH Electrode Materials using In Operando Resonance Raman Spectroscopy. <i>Advanced Science</i> , 2016 , 3, 1500433	13.6	58
29	A novel low-thermal-budget approach for the co-production of ethylene and hydrogen via the electrochemical non-oxidative deprotonation of ethane. <i>Energy and Environmental Science</i> , 2018 , 11, 1710-1716	35.4	55
28	High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials. <i>Energy and Environmental Science</i> , 2014 , 7, 306-310	35.4	51
27	Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering. <i>Nanoscale</i> , 2013 , 5, 11620-4	7.7	51
26	An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes. <i>Nano Energy</i> , 2018 , 47, 474-480	17.1	48
25	Operando Investigation into Dynamic Evolution of Cathode-Electrolyte Interfaces in a Li-Ion Battery. <i>Nano Letters</i> , 2019 , 19, 2037-2043	11.5	45
24	Understanding Performance Degradation in Cation-Disordered Rock-Salt Oxide Cathodes. <i>Advanced Energy Materials</i> , 2019 , 9, 1901255	21.8	45
23	Inhibiting Sn coarsening to enhance the reversibility of conversion reaction in lithiated SnO2 anodes by application of super-elastic NiTi films. <i>Acta Materialia</i> , 2016 , 109, 248-258	8.4	45
22	Deformable fibrous carbon supported ultrafine nano-SnO2 as a high volumetric capacity and cyclic durable anode for Li storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15097-15107	13	44
21	High-performance Ni B aZr0.1Ce0.7Y0.1Yb0.1O3[[BZCYYb) membranes for hydrogen separation. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 14743-14749	6.7	39

20	High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. <i>Journal of Power Sources</i> , 2013 , 241, 454-459	8.9	32
19	Evolution of Local Structural Ordering and Chemical Distribution upon Delithiation of a Rock SaltBtructured Li1.3Ta0.3Mn0.4O2 Cathode. <i>Advanced Functional Materials</i> , 2019 , 29, 1808294	15.6	29
18	Evaluation of La0.4Ba0.6Fe0.8Zn0.2O3l Sm0.2Ce0.8O1.9 as a potential cobalt-free composite cathode for intermediate temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2015 , 275, 808-8	1 ⁸ .9	25
17	A high-performance, cobalt-free cathode for intermediate-temperature solid oxide fuel cells with excellent CO2 tolerance. <i>Journal of Power Sources</i> , 2016 , 319, 178-184	8.9	25
16	Role of Redox-Inactive Transition-Metals in the Behavior of Cation-Disordered Rocksalt Cathodes. <i>Small</i> , 2020 , 16, e2000656	11	22
15	A Fluorination Method for Improving Cation-Disordered Rocksalt Cathode Performance. <i>Advanced Energy Materials</i> , 2020 , 10, 2001671	21.8	18
14	Contribution of carbon fiber paper (CFP) to the capacitance of a CFP-supported manganese oxide supercapacitor. <i>Journal of Power Sources</i> , 2014 , 248, 1197-1200	8.9	15
13	In Situ and Surface-Enhanced Raman Spectroscopy Study of Electrode Materials in Solid Oxide Fuel Cells. <i>Electrochemical Energy Reviews</i> , 2018 , 1, 433-459	29.3	14
12	An Overview of Cation-Disordered Lithium-Excess Rocksalt Cathodes. ACS Energy Letters, 1358-1376	20.1	12
11	Fluorination-Enhanced Surface Stability of Cation-Disordered Rocksalt Cathodes for Li-Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2101888	15.6	11
10	Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. <i>Nano Letters</i> , 2015 , 15, 6047-50	11.5	9
9	A bi-functional WO3-based anode enables both energy storage and conversion in an intermediate-temperature fuel cell. <i>Energy Storage Materials</i> , 2018 , 12, 79-84	19.4	8
8	A durable polyvinyl butyral-CsH2PO4 composite electrolyte for solid acid fuel cells. <i>Journal of Power Sources</i> , 2017 , 359, 1-6	8.9	6
7	Understanding cation-disordered rocksalt oxyfluoride cathodes. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7826-7837	13	6
6	Formation of LiF Surface Layer During Direct Fluorination of High-Capacity Co-Free Disordered Rocksalt Cathodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 38221-38228	9.5	5
5	Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and Phenomena of Electrochemical Energy Storage and Conversion <i>ACS Applied Materials & Emp; Interfaces</i> , 2022 ,	9.5	4
4	In situ Raman spectroscopic analysis of the coking resistance mechanism on SrZr0.95Y0.05O3\(\text{Solid}\) surface for solid oxide fuel cell anodes. <i>Journal of Power Sources</i> , 2016 , 324, 282-287	8.9	2
3	Role of Fluorine in Chemomechanics of Cation-Disordered Rocksalt Cathodes. <i>Chemistry of Materials</i> , 2021 , 33, 7028-7038	9.6	2

LIST OF PUBLICATIONS

Li-Ion Batteries: A Fluorination Method for Improving Cation-Disordered Rocksalt Cathode
Performance (Adv. Energy Mater. 35/2020). Advanced Energy Materials, **2020**, 10, 2070146

21.8

Atomic-scale mechanisms for fluorination-enhanced cycling stability of cation-disordered rocksalt cathodes. *Microscopy and Microanalysis*, **2021**, 27, 1256-1258

0.5