
Narasaiah kolliputi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3666564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	4-Hydroxy-2-nonenal: a critical target in oxidative stress?. American Journal of Physiology - Cell Physiology, 2016, 311, C537-C543.	4.6	163
2	NLRP3 deletion protects from hyperoxia-induced acute lung injury. American Journal of Physiology - Cell Physiology, 2013, 305, C182-C189.	4.6	131
3	The role of the NLRP3 inflammasome in pulmonary diseases. Therapeutic Advances in Respiratory Disease, 2015, 9, 188-197.	2.6	117
4	Mir-206 Regulates Pulmonary Artery Smooth Muscle Cell Proliferation and Differentiation. PLoS ONE, 2012, 7, e46808.	2.5	102
5	IL-6 Protects against Hyperoxia-Induced Mitochondrial Damage via Bcl-2–Induced Bak Interactions with Mitofusions. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 385-396.	2.9	81
6	The Inflammasome Mediates Hyperoxia-Induced Alveolar Cell Permeability. Journal of Immunology, 2010, 184, 5819-5826.	0.8	77
7	TXNIP shuttling: missing link between oxidative stress and inflammasome activation. Frontiers in Physiology, 2013, 4, 50.	2.8	77
8	Trans-differentiation of Alveolar Epithelial Type II Cells to Type I Cells Involves Autocrine Signaling by Transforming Growth Factor β1 through the Smad Pathway. Journal of Biological Chemistry, 2007, 282, 3968-3976.	3.4	73
9	Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 422-435.	2.9	69
10	The dawn of succinylation: a posttranslational modification. American Journal of Physiology - Cell Physiology, 2018, 314, C228-C232.	4.6	65
11	Phosphoinositide 3-kinase-Î′ regulates fungus-induced allergic lung inflammation through endoplasmic reticulum stress. Thorax, 2016, 71, 52-63.	5.6	62
12	MicroRNA-133a-1 regulates inflammasome activation through uncoupling protein-2. Biochemical and Biophysical Research Communications, 2013, 439, 407-412.	2.1	61
13	NALPâ€3 inflammasome silencing attenuates ceramideâ€induced transepithelial permeability. Journal of Cellular Physiology, 2012, 227, 3310-3316.	4.1	60
14	IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L6-L16.	2.9	52
15	MicroRNA 16 modulates epithelial sodium channel in human alveolar epithelial cells. Biochemical and Biophysical Research Communications, 2012, 426, 203-208.	2.1	47
16	IL-6 Cytoprotection in Hyperoxic Acute Lung Injury Occurs via Suppressor of Cytokine Signaling-1–Induced Apoptosis Signal–Regulating Kinase-1 Degradation. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 314-324.	2.9	45
17	A mitochondrial delicacy: dynamin-related protein 1 and mitochondrial dynamics. American Journal of Physiology - Cell Physiology, 2018, 315, C80-C90.	4.6	44
18	Deletion of P2X7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L572-L581.	2.9	43

#	Article	IF	CITATIONS
19	Soluble ACE2 as a potential therapy for COVID-19. American Journal of Physiology - Cell Physiology, 2021, 320, C279-C281.	4.6	43
20	4-Hydroxynonenal regulates mitochondrial function in human small airway epithelial cells. Oncotarget, 2015, 6, 41508-41521.	1.8	39
21	Genipin suppresses NLRP3 inflammasome activation through uncoupling protein-2. Cellular Immunology, 2015, 297, 40-45.	3.0	38
22	<i>Akap1</i> genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L860-L870.	2.9	35
23	High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation. Toxicology and Applied Pharmacology, 2015, 282, 100-107.	2.8	32
24	Differential expression of GABAA receptor π subunit in cultured rat alveolar epithelial cells. Cell and Tissue Research, 2005, 321, 173-183.	2.9	30
25	Resolvins Decrease Oxidative Stress Mediated Macrophage and Epithelial Cell Interaction through Decreased Cytokine Secretion. PLoS ONE, 2015, 10, e0136755.	2.5	29
26	The Role of Aging in Idiopathic Pulmonary Fibrosis. Lung, 2015, 193, 605-610.	3.3	29
27	Enhancer of Zeste Homolog 2 Induces Pulmonary Artery Smooth Muscle Cell Proliferation. PLoS ONE, 2012, 7, e37712.	2.5	28
28	Role of epigenetics in pulmonary hypertension. American Journal of Physiology - Cell Physiology, 2014, 306, C1101-C1105.	4.6	28
29	Dysregulation of CLOCK gene expression in hyperoxia-induced lung injury. American Journal of Physiology - Cell Physiology, 2014, 306, C999-C1007.	4.6	27
30	Epigenetics of Mucus Hypersecretion in Chronic Respiratory Diseases. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 299-309.	2.9	27
31	Hyperoxia-induced hypertrophy and ion channel remodeling in left ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1651-H1661.	3.2	24
32	The role of club cell phenoconversion and migration in idiopathic pulmonary fibrosis. Aging, 2016, 8, 3091-3109.	3.1	23
33	Adenovirus-mediated transfer of the SOCS-1 gene to mouse lung confers protection against hyperoxic acute lung injury. Free Radical Biology and Medicine, 2015, 84, 196-205.	2.9	22
34	Deletion of ASK1 Protects against Hyperoxia-Induced Acute Lung Injury. PLoS ONE, 2016, 11, e0147652.	2.5	21
35	Dysfunctional telomeres through mitostressâ€induced cGAS/STING activation to aggravate immune senescence and viral pneumonia. Aging Cell, 2022, 21, e13594.	6.7	21
36	Pivotal role of AKAP121 in mitochondrial physiology. American Journal of Physiology - Cell Physiology, 2016, 310, C625-C628.	4.6	19

#	Article	IF	CITATIONS
37	Cigarette Smoke Impairs A2A Adenosine Receptor Mediated Wound Repair through Up-regulation of Duox-1 Expression. Scientific Reports, 2017, 7, 44405.	3.3	19
38	Airway epithelial phosphoinositide 3-kinase-δ contributes to the modulation of fungi-induced innate immune response. Thorax, 2018, 73, 758-768.	5.6	19
39	Alda-1 Attenuates Hyperoxia-Induced Acute Lung Injury in Mice. Frontiers in Pharmacology, 2020, 11, 597942.	3.5	18
40	Plasma levels of TNF-α, IL-6, IFN-γ, IL-12, IL-17, IL-22, and IL-23 in achalasia, eosinophilic esophagitis (EoE), and gastroesophageal reflux disease (GERD). BMC Gastroenterology, 2019, 19, 28.	2.0	17
41	Inflammasome: a new trigger of Alzheimer's disease. Frontiers in Aging Neuroscience, 2014, 6, 80.	3.4	16
42	Oxidative stress induces club cell proliferation and pulmonary fibrosis in Atp8b1 mutant mice. Aging, 2019, 11, 209-229.	3.1	16
43	Detection of canonical A-to-G editing events at 3′ UTRs and microRNA target sites in human lungs using next-generation sequencing. Oncotarget, 2015, 6, 35726-35736.	1.8	15
44	Alda-1 attenuates hyperoxia-induced mitochondrial dysfunction in lung vascular endothelial cells. Aging, 2019, 11, 3909-3918.	3.1	14
45	The nitrated fatty acid, 10-nitrooleate inhibits the neutrophil chemotaxis via peroxisome proliferator-activated receptor gamma in CLP-induced sepsis in mice. International Immunopharmacology, 2019, 72, 159-165.	3.8	13
46	SOCS-1 rescues IL-1β-mediated suppression of epithelial sodium channel in mouse lung epithelial cells via ASK-1. Oncotarget, 2016, 7, 29081-29091.	1.8	13
47	ROMO1 links oxidative stress to mitochondrial integrity. Journal of Cell Communication and Signaling, 2015, 9, 73-75.	3.4	12
48	A new role for inflammasomes: sensing the disturbances in non-alcoholic fatty liver disease. Frontiers in Physiology, 2013, 4, 156.	2.8	11
49	Global gene profiling of aging lungs in Atp8b1 mutant mice. Aging, 2016, 8, 2232-2252.	3.1	11
50	Can microRNAs keep inflammasomes in check?. Frontiers in Genetics, 2013, 4, 30.	2.3	9
51	Inflammasome Inhibition Suppresses Alveolar Cell Permeability Through Retention of Neuregulin-1 (NRG-1). Cellular Physiology and Biochemistry, 2015, 36, 2012-2024.	1.6	9
52	Can inflammation regulate systemic aging?. Experimental Gerontology, 2015, 67, 1-2.	2.8	8
53	Hedgehog: the key to maintaining adult lung repair and regeneration. Journal of Cell Communication and Signaling, 2017, 11, 95-96.	3.4	8
54	Mast cell–derived plasminogen activator inhibitor type 1 promotes airway inflammation and remodeling in a murine model of asthma. Journal of Allergy and Clinical Immunology, 2018, 142, 294-297.e5.	2.9	8

#	Article	IF	CITATIONS
55	Altered expression of p63 isoforms and expansion of p63- and club cell secretory protein-positive epithelial cells in the lung as novel features of aging. American Journal of Physiology - Cell Physiology, 2019, 316, C492-C508.	4.6	8
56	Soluble Expression of a Human MnSOD and Hirudin Fusion Protein in Escherichia coli, and Its Effects on Metastasis and Invasion of 95-D Cells. Journal of Microbiology and Biotechnology, 2016, 26, 1881-1890.	2.1	7
57	Coronavirus: a shift in focus away from IFN response and towards other inflammatory targets. Journal of Cell Communication and Signaling, 2020, 14, 469-470.	3.4	6
58	Human lung on a chip: innovative approach for understanding disease processes and effective drug testing. Frontiers in Pharmacology, 2012, 3, 205.	3.5	5
59	New hope for a microRNA therapy for pulmonary arterial hypertension. Frontiers in Genetics, 2013, 4, 137.	2.3	5
60	Thyroid hormone: a resurgent treatment for an emergent concern. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L945-L950.	2.9	5
61	Two Sides of a Coin: The Dual Roles of Chitinase 3-Like 1 in Idiopathic Pulmonary Fibrosis. Lung, 2014, 192, 825-827.	3.3	4
62	Putting the brakes on age-related idiopathic pulmonary fibrosis: Can Nox4 inhibitors suppress IPF?. Experimental Gerontology, 2015, 63, 81-82.	2.8	4
63	Nicotine in E-cigarette smoke: cancer culprit?. Journal of Cell Communication and Signaling, 2020, 14, 127-128.	3.4	4
64	Lung fibrosis is induced in ADAR2 overexpressing mice via HuRâ€induced CTGF signaling. FASEB Journal, 2022, 36, e22143.	0.5	4
65	Mitochondrial Protein Akap1 Deletion Exacerbates Endoplasmic Reticulum Stress in Mice Exposed to Hyperoxia. Frontiers in Pharmacology, 2022, 13, 762840.	3.5	4
66	Commentary: The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Frontiers in Pharmacology, 2015, 6, 229.	3.5	3
67	Does plgR Down-Regulation in COPD Cause Reprogramming of Bronchial Epithelium?. Lung, 2015, 193, 1-2.	3.3	3
68	Elevated potassium outward currents in hyperoxia treated atrial cardiomyocytes. Journal of Cellular Physiology, 2018, 233, 4317-4326.	4.1	3
69	Disruption of Circadian Rhythms in Critical Illness - A Role of Hyperoxia-Induced Lung Injury. Current Pharmaceutical Design, 2015, 21, 3489-3495.	1.9	3
70	Nitrated fatty acid, 10-nitrooleate protects against hyperoxia-induced acute lung injury in mice. International Immunopharmacology, 2022, 109, 108838.	3.8	3
71	Putting the brakes on acute lung injury: can resolvins suppress acute lung injury?. Frontiers in Physiology, 2012, 3, 445.	2.8	2
72	An Old Molecule with a New Role: Microtubules in Inflammasome Regulation. Cell Biochemistry and Biophysics, 2014, 70, 697-698.	1.8	2

#	Article	IF	CITATIONS
73	Micro RNAs: The Future of Idiopathic Pulmonary Fibrosis Therapy. Cell Biochemistry and Biophysics, 2015, 71, 509-511.	1.8	2
74	Matrix Metalloproteinase 7 Expression and Apical Epithelial Defects in Atp8b1 Mutant Mouse Model of Pulmonary Fibrosis. Biomolecules, 2022, 12, 283.	4.0	2
75	Age-Related Increase of Collagen/Fibrin Deposition and High PAI-1 Production in Human Nasal Polyps. Frontiers in Pharmacology, 2022, 13, .	3.5	2
76	Is isoprenylcysteine carboxyl methyltransferase the key to reverse ageing?. Frontiers in Aging Neuroscience, 2013, 5, 40.	3.4	1
77	LRBA Causes Immunodeficiency and Autoimmunity By Deregulating NFkB-Mediated Multiple Immune Effectors Critical For B Cell Activation. Journal of Allergy and Clinical Immunology, 2014, 133, AB251.	2.9	1
78	EZH2, the moderator in the discussion between methyltransferases at histone H3?. Journal of Cell Communication and Signaling, 2015, 9, 77-79.	3.4	1
79	Kinases: a remote control in inflammasome activity. Journal of Cell Communication and Signaling, 2015, 9, 285-287.	3.4	1
80	Remission of fibrosis: rage to the rescue. Journal of Cell Communication and Signaling, 2019, 13, 119-120.	3.4	1
81	BMI1 Silencing Induces Mitochondrial Dysfunction in Lung Epithelial Cells Exposed to Hyperoxia. Frontiers in Physiology, 2022, 13, 814510.	2.8	1
82	Aberrant Expression of ACO1 in Vasculatures Parallels Progression of Idiopathic Pulmonary Fibrosis. Frontiers in Pharmacology, 0, 13, .	3.5	1
83	NLRP3-Deficient Mice Have an Enhanced Neutrophil Apoptosis and a Suppressed Inflammatory Response to Hyperoxia-Induced Acute Lung Injury. Journal of Allergy and Clinical Immunology, 2013, 131, AB9.	2.9	0
84	Resolvin D1 Inhibits IL-1beta Induced Alveolar Epithelial Cell Activation. Journal of Allergy and Clinical Immunology, 2013, 131, AB197.	2.9	0
85	Inhibition of IL-1β Mediated Proinflammatory Cytokine Production by Epigallocatechin Gallate in Human Alveolar Epithelial Cells. Journal of Allergy and Clinical Immunology, 2013, 131, AB11.	2.9	0
86	New hope for Nutlin-3a therapy for pulmonary arterial hypertension. Frontiers in Pharmacology, 2013, 4, 87.	3.5	0
87	Epigenetics of pulmonary diseases. , 2021, , 185-195.		0
88	Is the mechanism of COVID-19 coagulopathy still a rabbit's hole?. Journal of Cell Communication and Signaling, 2022, 16, 1-3.	3.4	0
89	Inflammasome: A Pivotal Role in hyperoxiaâ€induced acute lung injury?. FASEB Journal, 2009, 23, 1025.1.	0.5	0
90	Forkhead Transcription Factor FOXO3a Protects Alveolar Epithelial Cells from Oxidative Stress. FASEB Journal, 2011, 25, .	0.5	0

#	Article	IF	CITATIONS
91	Viruses: Cofactors in Idiopathic Pulmonary Fibrosis. , 2012, 01, .		О
92	MicroRNAâ€16 regulates ENaC expression in alveolar epithelial cells. FASEB Journal, 2012, 26, lb756.	0.5	0
93	Deletion of NALP3 protects against hyperoxiaâ€induced acute lung injury. FASEB Journal, 2012, 26, lb464.	0.5	Ο
94	Hyperoxia induced lung injury is associated with alterations in circadian clock genes in mice. FASEB Journal, 2013, 27, 914.8.	0.5	0
95	Overexpression of Circadian CLOCK genes alters proinflammatory cytokine production in human alveolar epithelial cells. FASEB Journal, 2013, 27, 722.8.	0.5	0
96	ASC plays a role in alveolar epithelial integrity. FASEB Journal, 2013, 27, 1143.5.	0.5	0
97	Aspirinâ€Triggered Resolvin D1 Protects Against Cytokine Induced Alveolar Epithelial Cell Injury. FASEB Journal, 2015, 29, 863.18.	0.5	0
98	ASK1 deficiency attenuates hyperoxiaâ€induced inflammation and cell apoptosis in the lung. FASEB Journal, 2015, 29, 1046.1.	0.5	0
99	The Role of Adenosine Deaminase Acting on RNA (ADAR) Family of Proteins in Hyperoxia Induced Acute Lung Injury. FASEB Journal, 2019, 33, 627.10.	0.5	Ο
100	Aldaâ€1 shields mitochondrial dynamic proteins from hyperoxia via Aldh2 activation. FASEB Journal, 2019, 33, .	0.5	0