
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3666527/publications.pdf Version: 2024-02-01

DATRICK KÃ1/1 DV

#	Article	IF	CITATIONS
1	Efficacy and safety of temelimab in multiple sclerosis: Results of a randomized phase 2b and extension study. Multiple Sclerosis Journal, 2022, 28, 429-440.	3.0	40
2	Functional in vivo assessment of stem cell-secreted pro-oligodendroglial factors. Neural Regeneration Research, 2022, 17, 2194.	3.0	0
3	Increased Remyelination and Proregenerative Microglia Under Siponimod Therapy in Mechanistic Models. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	23
4	Endogenous clues promoting remyelination in multiple sclerosis. Current Opinion in Neurology, 2022, 35, 307-312.	3.6	3
5	Identification of novel myelin repair drugs by modulation of oligodendroglial differentiation competence. EBioMedicine, 2021, 65, 103276.	6.1	17
6	C21orf91 Regulates Oligodendroglial Precursor Cell Fate—A Switch in the Glial Lineage?. Frontiers in Cellular Neuroscience, 2021, 15, 653075.	3.7	8
7	Agammaglobulinemia with normal B-cell numbers in a patient lacking Bob1. Journal of Allergy and Clinical Immunology, 2021, 147, 1977-1980.	2.9	12
8	Case Report: Successful Stabilization of Marburg Variant Multiple Sclerosis With Ocrelizumab Following High-Dose Cyclophosphamide Rescue. Frontiers in Neurology, 2021, 12, 696807.	2.4	1
9	Microglia contributes to remyelination in cerebral but not spinal cord ischemia. Glia, 2021, 69, 2739-2751.	4.9	9
10	Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	62
11	A distinct CD38+CD45RA+ population of CD4+, CD8+, and double-negative T cells is controlled by FAS. Journal of Experimental Medicine, 2021, 218, .	8.5	25
12	Case Report: Persisting Lymphopenia During Neuropsychiatric Tumefactive Multiple Sclerosis Rebound Upon Fingolimod Withdrawal. Frontiers in Neurology, 2021, 12, 785180.	2.4	3
13	Small molecule screening as an approach to encounter inefficient myelin repair. Current Opinion in Pharmacology, 2021, 61, 127-135.	3.5	7
14	TLR4 Associated Signaling Disrupters as a New Means to Overcome HERV-W Envelope-Mediated Myelination Deficits. Frontiers in Cellular Neuroscience, 2021, 15, 777542.	3.7	6
15	Nitrosative Stress Molecules in Multiple Sclerosis: A Meta-Analysis. Biomedicines, 2021, 9, 1899.	3.2	2
16	Heterogeneous fate choice of genetically modulated adult neural stem cells in gray and white matter of the central nervous system. Glia, 2020, 68, 393-406.	4.9	4
17	Neurological manifestations of severe acute respiratory syndrome coronavirus 2—a controversy â€~gone viral'. Brain Communications, 2020, 2, fcaa149.	3.3	7
18	Long-term robustness of a T-cell system emerging from somatic rescue of a genetic block in T-cell development. EBioMedicine, 2020, 59, 102961.	6.1	5

#	Article	IF	CITATIONS
19	Secretome Analysis of Mesenchymal Stem Cell Factors Fostering Oligodendroglial Differentiation of Neural Stem Cells In Vivo. International Journal of Molecular Sciences, 2020, 21, 4350.	4.1	16
20	Meeting report: "Human endogenous retroviruses: HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancerâ€; Lyon, France, november 5th and 6th 2019 – an MS scientist's digest. Multiple Sclerosis and Related Disorders, 2020, 42, 102068.	2.0	4
21	Protective effects of 4-aminopyridine in experimental optic neuritis and multiple sclerosis. Brain, 2020, 143, 1127-1142.	7.6	29
22	Human endogenous retroviruses: ammunition for myeloid cells in neurodegenerative diseases?. Neural Regeneration Research, 2020, 15, 1043.	3.0	5
23	The Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells, 2019, 8, 825.	4.1	71
24	An unmet clinical need: roads to remyelination in MS. Neurological Research and Practice, 2019, 1, 21.	2.0	19
25	Neural Cell Responses Upon Exposure to Human Endogenous Retroviruses. Frontiers in Genetics, 2019, 10, 655.	2.3	17
26	Do Neural Stem Cells Have a Choice? Heterogenic Outcome of Cell Fate Acquisition in Different Injury Models. International Journal of Molecular Sciences, 2019, 20, 455.	4.1	7
27	pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15216-15225.	7.1	78
28	Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination. Glia, 2019, 67, 1510-1525.	4.9	28
29	Sildenafil Inhibits Myelin Expression and Myelination of Oligodendroglial Precursor Cells. ASN Neuro, 2019, 11, 175909141983244.	2.7	10
30	Regulation of sirtuin expression in autoimmune neuroinflammation: Induction of SIRT1 in oligodendrocyte progenitor cells. Neuroscience Letters, 2019, 704, 116-125.	2.1	21
31	A gene regulatory architecture that controls regionâ€independent dynamics of oligodendrocyte differentiation. Glia, 2019, 67, 825-843.	4.9	36
32	Reply to Ruprecht and Mayer: Unearthing genomic fossils in the pathogenesis of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19793-19794.	7.1	6
33	Remyelination in multiple sclerosis: from concept to clinical trials. Current Opinion in Neurology, 2019, 32, 378-384.	3.6	28
34	Aberrant Oligodendrogenesis in Down Syndrome: Shift in Gliogenesis?. Cells, 2019, 8, 1591.	4.1	18
35	Secretome analysis of nerve repair mediating Schwann cells reveals Smadâ€dependent trophism. FASEB Journal, 2019, 33, 4703-4715.	0.5	25
36	Managing Risks with Immune Therapies in Multiple Sclerosis. Drug Safety, 2019, 42, 633-647.	3.2	18

#	Article	IF	CITATIONS
37	Rescuing the negative impact of human endogenous retrovirus envelope protein on oligodendroglial differentiation and myelination. Glia, 2019, 67, 160-170.	4.9	31
38	Current advancements in promoting remyelination in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 7-14.	3.0	41
39	ECTRIMS/ACTRIMS 2017: Closing in on neurorepair in progressive multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 696-700.	3.0	4
40	Teriflunomide promotes oligodendroglial differentiation and myelination. Journal of Neuroinflammation, 2018, 15, 76.	7.2	37
41	Early alpha-lipoic acid therapy protects from degeneration of the inner retinal layers and vision loss in an experimental autoimmune encephalomyelitis-optic neuritis model. Journal of Neuroinflammation, 2018, 15, 71.	7.2	37
42	Human Endogenous Retroviruses in Neurological Diseases. Trends in Molecular Medicine, 2018, 24, 379-394.	6.7	212
43	Human mesenchymal factors induce rat hippocampal―and human neural stem cell dependent oligodendrogenesis. Glia, 2018, 66, 145-160.	4.9	22
44	Transcriptional Profiling of Ligand Expression in Cell Specific Populations of the Adult Mouse Forebrain That Regulates Neurogenesis. Frontiers in Neuroscience, 2018, 12, 220.	2.8	13
45	Drug repurposing for neuroregeneration in multiple sclerosis. Neural Regeneration Research, 2018, 13, 1366.	3.0	10
46	Prehistoric enemies within: The contribution of human endogenous retroviruses to neurological diseases. Meeting report: "Second International Workshop on Human Endogenous Retroviruses and Diseaseâ€; Washington DC, March 13th and 14th 2017. Multiple Sclerosis and Related Disorders, 2017, 15, 18-23.	2.0	4
47	Cell-based therapeutic strategies for multiple sclerosis. Brain, 2017, 140, 2776-2796.	7.6	139
48	Heterogeneous populations of neural stem cells contribute to myelin repair. Neural Regeneration Research, 2017, 12, 509.	3.0	23
49	Taking Advantage of Nature's Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration?. International Journal of Molecular Sciences, 2016, 17, 1895.	4.1	9
50	CXCR7 Is Involved in Human Oligodendroglial Precursor Cell Maturation. PLoS ONE, 2016, 11, e0146503.	2.5	18
51	Recent achievements in stem cell-mediated myelin repair. Current Opinion in Neurology, 2016, 29, 205-212.	3.6	6
52	Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends in Neurosciences, 2016, 39, 246-263.	8.6	82
53	Natalizumab restores aberrant mi <scp>RNA</scp> expression profile in multiple sclerosis and reveals a critical role for miRâ€20b. Annals of Clinical and Translational Neurology, 2015, 2, 43-55.	3.7	71
54	Immunoglobulins stimulate cultured Schwann cell maturation and promote their potential to induce axonal outgrowth. Journal of Neuroinflammation, 2015, 12, 107.	7.2	16

#	Article	IF	CITATIONS
55	Targeting semaphorins in MS as a treatment strategy to promote remyelination: A tale of mice, rats and men. Multiple Sclerosis Journal, 2015, 21, 1616-1617.	3.0	8
56	Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis?. International Journal of Molecular Sciences, 2015, 16, 15057-15085.	4.1	10
57	Promoting remyelination in multiple sclerosis: Current drugs and future prospects. Multiple Sclerosis Journal, 2015, 21, 541-549.	3.0	63
58	Oligodendroglial Maturation Is Dependent on Intracellular Protein Shuttling. Journal of Neuroscience, 2015, 35, 906-919.	3.6	34
59	Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Experimental Neurology, 2015, 271, 25-35.	4.1	39
60	The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade. Multiple Sclerosis Journal, 2015, 21, 1200-1203.	3.0	54
61	Novel approaches for the development of peripheral nerve regenerative therapies. Neural Regeneration Research, 2015, 10, 1743.	3.0	1
62	Molecules Involved in the Crosstalk Between Immune- and Peripheral Nerve Schwann Cells. Journal of Clinical Immunology, 2014, 34, 86-104.	3.8	36
63	Negative Regulators of Schwann Cell Differentiation—Novel Targets for Peripheral Nerve Therapies?. Journal of Clinical Immunology, 2013, 33, 18-26.	3.8	26
64	Oligodendroglial lineage cells express nuclear p57kip2 in multiple sclerosis lesions. Glia, 2013, 61, 1250-1260.	4.9	5
65	Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Annals of Neurology, 2013, 74, 721-732.	5.3	155
66	Mesenchymal Stem Cell Conditioning Promotes Rat Oligodendroglial Cell Maturation. PLoS ONE, 2013, 8, e71814.	2.5	45
67	Mesenchymal Stem Cells Prime Proliferating Adult Neural Progenitors Toward an Oligodendrocyte Fate. Stem Cells and Development, 2012, 21, 1838-1851.	2.1	55
68	p57kip2 regulates glial fate decision in adult neural stem cells. Development (Cambridge), 2012, 139, 3306-3315.	2.5	27
69	Vinpocetine Inhibits Oligodendroglial Precursor Cell Differentiation. Cellular Physiology and Biochemistry, 2012, 30, 711-722.	1.6	9
70	Histone methyltransferase enhancer of zeste homolog 2 regulates Schwann cell differentiation. Glia, 2012, 60, 1696-1708.	4.9	26
71	The remyelination Philosopher's Stone: stem and progenitor cell therapies for multiple sclerosis. Cell and Tissue Research, 2012, 349, 331-347.	2.9	34
72	The complex world of oligodendroglial differentiation inhibitors. Annals of Neurology, 2011, 69, 602-618.	5.3	119

#	Article	IF	CITATIONS
73	Activation of CXCR7 receptor promotes oligodendroglial cell maturation. Annals of Neurology, 2010, 68, 915-924.	5.3	69
74	Differential Patterns of Local Gene Regulation in Crush Lesions of the Rat Optic and Sciatic Nerve: Relevance to Posttraumatic Regeneration. Cellular Physiology and Biochemistry, 2010, 26, 483-494.	1.6	7
75	Deciphering the Oligodendrogenic Program of Neural Progenitors: Cell Intrinsic and Extrinsic Regulators. Stem Cells and Development, 2010, 19, 595-606.	2.1	33
76	CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. Journal of Cell Science, 2010, 123, 1081-1088.	2.0	100
77	p57kip2 is dynamically regulated in experimental autoimmune encephalomyelitis and interferes with oligodendroglial maturation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9087-9092.	7.1	46
78	The α-chemokine CXCL14 is up-regulated in the sciatic nerve of a mouse model of Charcot–Marie–Tooth disease type 1A and alters myelin gene expression in cultured Schwann cells. Neurobiology of Disease, 2009, 33, 448-458.	4.4	20
79	SDF-1 stimulates neurite growth on inhibitory CNS myelin. Molecular and Cellular Neurosciences, 2009, 40, 293-300.	2.2	66
80	The cyclin-dependent kinase inhibitor p57kip2 is a negative regulator of Schwann cell differentiation and <i>in vitro</i> myelination. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8748-8753.	7.1	56
81	p57kip2's role beyond Schwann cell cycle control. Cell Cycle, 2008, 7, 2781-2786.	2.6	10
82	Gene expression profiling reveals that peripheral nerve regeneration is a consequence of both novel injury-dependent and reactivated developmental processes. Journal of Neurochemistry, 2006, 96, 1441-1457.	3.9	107
83	Increased cardiac mRNA expression of matrix metalloproteinase-1 (MMP–1) and its inhibitor (TIMP–1) in DCM patients. Clinical Research in Cardiology, 2006, 95, 261-269.	3.3	26
84	Osteopontin, a macrophageâ€derived matricellular glycoprotein, inhibits axon outgrowth. FASEB Journal, 2005, 19, 1-17.	0.5	26
85	Gene expression profiling reveals multiple novel intrinsic and extrinsic factors associated with axonal regeneration failure. European Journal of Neuroscience, 2004, 19, 32-42.	2.6	32
86	Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote nonâ€ischemic cortex. European Journal of Neuroscience, 2004, 19, 1708-1720.	2.6	61
87	Cyclic AMP and tumor necrosis factor-α regulate CXCR4 gene expression in Schwann cells. Molecular and Cellular Neurosciences, 2003, 24, 1-9.	2.2	24
88	Mammalian Achaete Scute Homolog 2 Is Expressed in the Adult Sciatic Nerve and Regulates the Expression of Krox24, Mob-1, CXCR4, and p57kip2 in Schwann Cells. Journal of Neuroscience, 2002, 22, 7586-7595.	3.6	50
89	Transcription factors in nerve regeneration. Progress in Brain Research, 2001, 132, 569-585.	1.4	4

90 Therapie der multiplen Sklerose: MedikamentĶse AnsÄæze zur Remyelinisierung in Prüfung. , 0, , .

0

#	Article	IF	CITATIONS
91	There is more than one route to achieve myelin repair. Regenerative Medicine, 0, , .	1.7	Ο