J Javier Laserna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3666436/publications.pdf Version: 2024-02-01

LIAVIED LASEDNA

#	Article	IF	CITATIONS
1	Refractory residues classification strategy using emission spectroscopy of laser-induced plasmas in tandem with a decision tree-based algorithm. Analytica Chimica Acta, 2022, 1191, 339294.	2.6	4
2	Size-dependent synergetic seeding effects in the inspection of airborne dry nanoaerosols by LIBS. Talanta, 2022, 239, 123067.	2.9	5
3	LIBS-Acoustic Mid-Level Fusion Scheme for Mineral Differentiation under Terrestrial and Martian Atmospheric Conditions. Analytical Chemistry, 2022, 94, 1840-1849.	3.2	13
4	Pressure Effects on Simultaneous Optical and Acoustics Data from Laser-Induced Plasmas in Air: Implications to the Differentiation of Geological Materials. Applied Spectroscopy, 2022, 76, 946-958.	1.2	1
5	Progress in arsenic determination at low levels in copper ores by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 195, 106501.	1.5	5
6	Investigation on the origin of molecular emissions in laser-induced breakdown spectroscopy under Mars-like atmospheric conditions of isotope-labeled compounds of interest in astrobiology. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 179, 106114.	1.5	10
7	Energy transfer mechanisms in laser-induced plasmas: Variation of physical traits mediated by the presence of single optically-trapped nanoparticulate material. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 180, 106193.	1.5	5
8	Optical Trapping as a Morphologically Selective Tool for In Situ LIBS Elemental Characterization of Single Nanoparticles Generated by Laser Ablation of Bulk Targets in Air. Analytical Chemistry, 2021, 93, 2635-2643.	3.2	20
9	The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Science Reviews, 2021, 217, 4.	3.7	160
10	Fast and In-Situ Identification of Archaeometallurgical Collections in the Museum of Malaga Using Laser-Induced Breakdown Spectroscopy and a New Mathematical Algorithm. Heritage, 2020, 3, 1330-1343.	0.9	4
11	Detectability and discrimination of biomarker organic precursors in a low pressure CO ₂ atmosphere by LIBS. Journal of Analytical Atomic Spectrometry, 2020, 35, 1947-1955.	1.6	11
12	Optical trapping reveals differences in dielectric and optical properties of copper nanoparticles compared to their oxides and ferrites. Scientific Reports, 2020, 10, 1198.	1.6	16
13	Multianalytical and multiproxy approach to the characterization of a Paleolithic lamp. An example in Nerja cave (Southern Iberian Peninsula). Journal of Archaeological Science: Reports, 2019, 28, 102021.	0.2	9
14	Laser-Induced Breakdown Spectroscopy (LIBS) of Organic Compounds: A Review. Applied Spectroscopy, 2019, 73, 963-1011.	1.2	68
15	Onset of optical emission in femtosecond laser-induced plasmas and its correlation with surface dynamics monitored by pump–probe time-resolved microscopy. Journal of Analytical Atomic Spectrometry, 2019, 34, 2119-2125.	1.6	2
16	Wavelength and energy dependence on ablation dynamics under femtosecond laser pulses observed by time-resolved pump–probe microscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 158, 105634.	1.5	1
17	Subfemtogram Simultaneous Elemental Detection in Multicomponent Nanomatrices Using Laser-Induced Plasma Emission Spectroscopy within Atmospheric Pressure Optical Traps. Analytical Chemistry, 2019, 91, 7444-7449.	3.2	19
18	Dual-Spectroscopy Platform for the Surveillance of Mars Mineralogy Using a Decisions Fusion Architecture on Simultaneous LIBS-Raman Data. Analytical Chemistry, 2018, 90, 2079-2087.	3.2	49

#	Article	IF	CITATIONS
19	Laser-Induced Breakdown Spectroscopy (LIBS): Fast, Effective, and Agile Leading Edge Analytical Technology. Applied Spectroscopy, 2018, 72, 35-50.	1.2	39
20	Isomer discrimination in condensed phase by laser-induced breakdown spectrometry and laser-ionization mass spectrometry using a tailored paired-pulse excitation scheme. Journal of Analytical Atomic Spectrometry, 2018, 33, 1469-1476.	1.6	7
21	Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 130, 75-81.	1.5	26
22	Monitoring the dynamics of the surface deformation prior to the onset of plasma emission during femtosecond laser ablation of noble metals by time-resolved reflectivity microscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 131, 1-7.	1.5	9
23	At-line monitoring of continuous casting sequences of steel using discriminant function analysis and dual-pulse laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2017, 32, 1119-1128.	1.6	21
24	Spectral Identification in the Attogram Regime through Laserâ€Induced Emission of Single Optically Trapped Nanoparticles in Air. Angewandte Chemie, 2017, 129, 14366-14370.	1.6	1
25	Spectral Identification in the Attogram Regime through Laserâ€Induced Emission of Single Optically Trapped Nanoparticles in Air. Angewandte Chemie - International Edition, 2017, 56, 14178-14182.	7.2	25
26	Angle of Observation Influence on Emission Signal from Spatially Confined Laser-Induced Plasmas. Applied Spectroscopy, 2017, 71, 87-96.	1.2	2
27	Remotely Exploring Deeper-Into-Matter by Non-Contact Detection of Audible Transients Excited by Laser Radiation. Sensors, 2017, 17, 2960.	2.1	1
28	Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects. Applied Optics, 2017, 56, 3773.	2.1	15
29	Effects of post-growth thermal annealing on room temperature pulsed laser deposited ZnO thin films. Journal of Physics: Conference Series, 2016, 687, 012028.	0.3	3
30	Distinction strategies based on discriminant function analysis for particular steel grades at elevated temperature using stand-off LIBS. Journal of Analytical Atomic Spectrometry, 2016, 31, 2242-2252.	1.6	15
31	Acting Role of Background Gas in the Emission Response of Laser-Induced Plasmas of Energetic Nitro Compounds. Applied Spectroscopy, 2016, 70, 1364-1374.	1.2	15
32	Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System. Applied Spectroscopy, 2016, 70, 618-626.	1.2	17
33	Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation. Physical Chemistry Chemical Physics, 2016, 18, 2398-2408.	1.3	43
34	Determination of plasma ignition threshold fluence during femtosecond single-shot laser ablation on metallic samples detected by optical emission spectroscopy. Journal of Analytical Atomic Spectrometry, 2015, 30, 1730-1735.	1.6	10
35	Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy. Analytica Chimica Acta, 2015, 876, 26-38.	2.6	46
36	A spectral sieve-based strategy for sensing inorganic and organic traces on solid surfaces using laser-induced breakdown spectroscopy. Analytical Methods, 2015, 7, 7280-7289.	1.3	5

#	Article	IF	CITATIONS
37	Sensing Signatures Mediated by Chemical Structure of Molecular Solids in Laser-Induced Plasmas. Analytical Chemistry, 2015, 87, 2794-2801.	3.2	47
38	A study of underwater stand-off laser-induced breakdown spectroscopy for chemical analysis of objects in the deep ocean. Journal of Analytical Atomic Spectrometry, 2015, 30, 1050-1056.	1.6	48
39	Spatial distribution analysis of strontium in human teeth by laser-induced breakdown spectroscopy: application to diagnosis of seawater drowning. International Journal of Legal Medicine, 2015, 129, 807-813.	1.2	16
40	Unveiling the identity of distant targets through advanced Raman-laser-induced breakdown spectroscopy data fusion strategies. Talanta, 2015, 134, 627-639.	2.9	33
41	Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system. Talanta, 2015, 137, 182-188.	2.9	74
42	Visualization of surface transformations during laser ablation of solids by femtosecond pump–probe time-resolved microscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 113, 30-36.	1.5	10
43	Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids. Journal of Analytical Atomic Spectrometry, 2015, 30, 2343-2352.	1.6	31
44	Study of Metal Organic Chemical Vapour Deposition (MOCVD) semiconductors III-V hyperstructures with Secondary Ion Mass Spectrometry (SIMS). IOP Conference Series: Materials Science and Engineering, 2014, 59, 012002.	0.3	0
45	Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 96, 12-20.	1.5	31
46	Primary and recombined emitting species in laser-induced plasmas of organic explosives in controlled atmospheres. Journal of Analytical Atomic Spectrometry, 2014, 29, 1675-1685.	1.6	30
47	Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy. Analytical Chemistry, 2014, 86, 5045-5052.	3.2	35
48	Chemical characterization of single micro- and nano-particles by optical catapulting–optical trapping–laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 100, 78-85.	1.5	49
49	Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers. Analytica Chimica Acta, 2014, 806, 107-116.	2.6	44
50	Potential of laser-induced breakdown spectroscopy for discrimination of nano-sized carbon materials. Insights on the optical characterization of graphene. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 97, 105-112.	1.5	12
51	Pressure Effects in Laser-Induced Plasmas of Trinitrotoluene and Pyrene by Laser-Induced Breakdown Spectroscopy (LIBS). Applied Spectroscopy, 2014, 68, 33-38.	1.2	19
52	Effect of Pulse Duration in Multi-Pulse Excitation of Silicon in Laser-Induced Breakdown Spectroscopy (LIBS). Applied Spectroscopy, 2014, 68, 1060-1066.	1.2	10
53	New insights into the potential factors affecting the emission spectra variability in standoff LIBS. Journal of Analytical Atomic Spectrometry, 2013, 28, 1750.	1.6	15
54	Laser-induced plasma spectroscopy of organic compounds. Understanding fragmentation processes using ion–photon coincidence measurements. Journal of Analytical Atomic Spectrometry, 2013, 28, 1377.	1.6	22

#	Article	IF	CITATIONS
55	Condensedâ€phase laser ionization timeâ€ofâ€flight mass spectrometry of highly energetic nitroâ€aromatic compounds. Rapid Communications in Mass Spectrometry, 2013, 27, 1807-1813.	0.7	12
56	Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 89, 1-6.	1.5	8
57	Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 89, 77-83.	1.5	77
58	Fundamentals of standâ€off Raman scattering spectroscopy for explosive fingerprinting. Journal of Raman Spectroscopy, 2013, 44, 121-130.	1.2	31
59	Insights in the laser-induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part I: Vapor bubble, shockwaves and plasma. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 82, 42-49.	1.5	48
60	Recognition of explosives fingerprints on objects for courier services using machine learning methods and laser-induced breakdown spectroscopy. Talanta, 2013, 110, 108-117.	2.9	39
61	Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 85, 71-77.	1.5	37
62	Evaluating the use of standoff LIBS in architectural heritage: surveying the Cathedral of Málaga. Journal of Analytical Atomic Spectrometry, 2013, 28, 810.	1.6	49
63	Laser-Induced Breakdown Spectroscopy. Analytical Chemistry, 2013, 85, 640-669.	3.2	429
64	Selective Sampling and Laser-Induced Breakdown Spectroscopy (LIBS) Analysis of Organic Explosive Residues on Polymer Surfaces. Applied Spectroscopy, 2012, 66, 1197-1203.	1.2	20
65	Spatial distribution of paleoclimatic proxies in stalagmite slabs using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2012, 27, 868.	1.6	26
66	Laserâ€induced breakdown spectroscopy of metals covered by water droplets. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 74-75, 95-102.	1.5	7
67	Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform. Analytica Chimica Acta, 2012, 754, 8-19.	2.6	42
68	Room temperature pulsed laser deposited ZnO thin films as photoluminiscence gas sensors. Applied Surface Science, 2012, 259, 806-810.	3.1	31
69	Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy. On-site trials in the Mediterranean Sea. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 74-75, 137-143.	1.5	107
70	New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues. Journal of Analytical Atomic Spectrometry, 2012, 27, 2111.	1.6	38
71	Secondary ion mass spectrometry of powdered explosive compounds for forensic evidence analysis. Rapid Communications in Mass Spectrometry, 2012, 26, 1203-1207.	0.7	4
72	Multi-analytical study of patination methods on steel substrates: a full insight into surface chemistry and morphology. Analytical and Bioanalytical Chemistry, 2012, 402, 2277-2285.	1.9	2

#	Article	IF	CITATIONS
73	New Raman–Laser-Induced Breakdown Spectroscopy Identity of Explosives Using Parametric Data Fusion on an Integrated Sensing Platform. Analytical Chemistry, 2011, 83, 6275-6285.	3.2	122
74	Analysis of explosive residues in human fingerprints using optical catapulting–laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2011, 26, 1445.	1.6	62
75	Deep Ablation and Depth Profiling by Laser-Induced Breakdown Spectroscopy (LIBS) Employing Multi-Pulse Laser Excitation: Application to Galvanized Steel. Applied Spectroscopy, 2011, 65, 797-805.	1.2	39
76	Optical Catapulting Laser Induced Breakdown Spectroscopy (OC-LIBS) And Conventional LIBS: A comparative Study. AIP Conference Proceedings, 2011, , .	0.3	6
77	Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy–LIBS sensor fusion. Analytical and Bioanalytical Chemistry, 2011, 400, 3353-3365.	1.9	67
78	Depth-profiling analysis of MOCVD-grown triple junction solar cells by SIMS. Surface and Interface Analysis, 2011, 43, 646-648.	0.8	1
79	Development of an energy-resolved method for SIMS in-depth analysis of metal-polymer interfaces. Surface and Interface Analysis, 2011, 43, 632-634.	0.8	2
80	New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 12-20.	1.5	144
81	Investigation of metallic interdiffusion in Al x Ga1â^'x N/GaN/sapphire heterostructures used for microelectronic devices by SEM/EDX and SIMS depth profiling. Analytical and Bioanalytical Chemistry, 2010, 397, 2865-2871.	1.9	3
82	The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 975-990.	1.5	163
83	Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy. Applied Surface Science, 2010, 256, 5924-5928.	3.1	18
84	Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 680-687.	1.5	37
85	Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy. Analytica Chimica Acta, 2010, 683, 52-57.	2.6	43
86	Atomic/molecular depth profiling of nanometricâ€metallized polymer thin films by secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 463-468.	0.7	3
87	Simultaneous Raman Spectroscopyâ^'Laser-Induced Breakdown Spectroscopy for Instant Standoff Analysis of Explosives Using a Mobile Integrated Sensor Platform. Analytical Chemistry, 2010, 82, 1389-1400.	3.2	126
88	Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Applied Optics, 2010, 49, C191.	2.1	40
89	On-Line Laser-Induced Breakdown Spectroscopy Determination of Magnesium Coating Thickness on Electrolytically Galvanized Steel in Motion. Applied Spectroscopy, 2010, 64, 1342-1349.	1.2	14
90	Experimental variables and matrix effects associated with the onset of ion generation in laser ionization of solid samples. Journal of Analytical Atomic Spectrometry, 2010, 25, 1424.	1.6	6

#	Article	IF	CITATIONS
91	SIMS investigation on the effect of the interstitial moisture in metallized polymer films. Journal of Analytical Atomic Spectrometry, 2010, 25, 669.	1.6	5
92	Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy. Applied Surface Science, 2009, 255, 5329-5333.	3.1	30
93	Energyâ€resolved depth profiling of metalâ€polymer interfaces using dynamic quadrupole secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 2357-2362.	0.7	8
94	Depth profiles of ceramic tiles by using orthogonal doubleâ€pulse laser induced breakdown spectrometry. Surface and Interface Analysis, 2009, 41, 714-719.	0.8	17
95	Depth profile analysis of layered samples using glow discharge assisted Laser-induced Breakdown Spectrometry (GD-LIBS). Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 378-383.	1.5	21
96	Laser-induced breakdown spectroscopy of solid aerosols produced by optical catapulting. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 642-648.	1.5	20
97	Optical emission analysis of solid samples by decoupled sputtering/excitation using a low fluence laser synchronized with a pulsed glow discharge. Applied Surface Science, 2009, 255, 8841-8845.	3.1	4
98	Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer. Analytica Chimica Acta, 2009, 633, 38-42.	2.6	62
99	Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements. Optics Express, 2009, 17, 10265.	1.7	49
100	Standoff LIBS detection of explosive residues behind a barrier. Journal of Analytical Atomic Spectrometry, 2009, 24, 1123.	1.6	60
101	Comparison of double-pulse and single-pulse laser-induced breakdown spectroscopy techniques in the analysis of powdered samples of silicate raw materials for the brick-and-tile industry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 42-50.	1.5	43
102	A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 305-311.	1.5	34
103	Subthreshold two-pulse time-delayed laser ionization of Cu. Applied Physics A: Materials Science and Processing, 2008, 92, 963-967.	1.1	4
104	Twoâ€pulse delayed 532â€nm laser ionization of metals using collinear subâ€ŧhreshold beams. Rapid Communications in Mass Spectrometry, 2008, 22, 1999-2005.	0.7	5
105	Libraries for spectrum identification: Method of normalized coordinates versus linear correlation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 383-388.	1.5	25
106	The potential of laser-induced breakdown spectrometry for real time monitoring the laser cleaning of archaeometallurgical objects. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 1191-1197.	1.5	35
107	Focused ion beam imaging of laser ablation sub-surface effects on layered materials. Applied Surface Science, 2008, 255, 2265-2269.	3.1	6
108	Alternative Statistical Methods for Spectral Data Processing: Applications to Laser-Induced Breakdown Spectroscopy of Gaseous and Aerosol Systems. Applied Spectroscopy, 2008, 62, 1144-1152.	1.2	24

#	Article	IF	CITATIONS
109	Man-Portable Laser-Induced Breakdown Spectroscopy System for in <i>Situ</i> Characterization of Karstic Formations. Applied Spectroscopy, 2008, 62, 1250-1255.	1.2	46
110	Glow-Discharge-Assisted Laser-Induced Breakdown Spectroscopy: Increased Sensitivity in Solid Analysis. Applied Spectroscopy, 2008, 62, 1262-1267.	1.2	28
111	Preliminary studies on stand-off laser induced breakdown spectroscopy detection of aerosols. Journal of Analytical Atomic Spectrometry, 2008, 23, 885.	1.6	34
112	In Situ Analytical Assessment and Chemical Imaging of Historical Buildings Using a Man-Portable Laser System. Applied Spectroscopy, 2007, 61, 558-564.	1.2	65
113	Optical Restriction of Plasma Emission Light for Nanometric Sampling Depth and Depth Profiling of Multilayered Metal Samples. Applied Spectroscopy, 2007, 61, 719-724.	1.2	9
114	Stand-off analysis of moving targets using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2007, 22, 84-87.	1.6	30
115	Energy assistance in laser induced plasma spectrometry (LIPS) by a synchronized microsecond-pulsed glow discharge secondary excitation. Journal of Analytical Atomic Spectrometry, 2007, 22, 183-186.	1.6	20
116	Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. Journal of Analytical Atomic Spectrometry, 2006, 21, 55-60.	1.6	208
117	Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 88-95.	1.5	75
118	Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 1034-1039.	1.5	45
119	Third International Conference on Laser Induced Plasma Spectroscopy and Applications (LIBS 2004). Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 877-878.	1.5	10
120	Chronocultural sorting of archaeological bronze objects using laser-induced breakdown spectrometry. Analytica Chimica Acta, 2005, 554, 136-143.	2.6	80
121	Thermal-to-plasma transitions and energy thresholds in laser ablated metals monitored by atomic emission/mass spectrometry coincidence analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 948-954.	1.5	30
122	Portable instrument and analytical method using laser-induced breakdown spectrometry for in situ characterization of speleothems in karstic caves. Journal of Analytical Atomic Spectrometry, 2005, 20, 295-300.	1.6	62
123	Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2005, 20, 552.	1.6	101
124	Calibration transfer method for the quantitative analysis of high-temperature materials with stand-off laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2005, 20, 1275.	1.6	26
125	Remote sensing instrument for solid samples based on open-path atomic emission spectrometry. Review of Scientific Instruments, 2004, 75, 2068-2074.	0.6	48
126	Laser-induced plasma spectrometry: truly a surface analytical tool. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 147-161.	1.5	208

#	Article	IF	CITATIONS
127	Large area mapping of non-metallic inclusions in stainless steel by an automated system based on laser ablation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 567-575.	1.5	24
128	Acoustic and optical emission during laser-induced plasma formation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1395-1401.	1.5	55
129	Atomic emission spectroscopy of laser-induced plasmas generated with an annular-shaped laser beam. Journal of Analytical Atomic Spectrometry, 2004, 19, 445-450.	1.6	13
130	Remote laser-induced plasma spectrometry for elemental analysis of samples of environmental interest. Journal of Analytical Atomic Spectrometry, 2004, 19, 1479-1484.	1.6	53
131	Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer. Journal of Analytical Atomic Spectrometry, 2004, 19, 462.	1.6	68
132	Real-Time Monitoring of High-Temperature Corrosion in Stainless Steels by Open-Path Laser-Induced Plasma Spectrometry. Applied Spectroscopy, 2004, 58, 1347-1352.	1.2	24
133	Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry. Analytical and Bioanalytical Chemistry, 2003, 375, 1144-1147.	1.9	38
134	Chemical maps of patterned samples by microline-imaging laser-induced plasma spectrometry. Surface and Interface Analysis, 2003, 35, 263-267.	0.8	18
135	Line-focused laser ablation for depth-profiling analysis of coated and layered materials. Applied Optics, 2003, 42, 6057.	2.1	39
136	Spectral analysis of the acoustic emission of laser-produced plasmas. Applied Optics, 2003, 42, 6078.	2.1	36
137	Chemical Imaging Using Microline Laser Ablation: Performance Comparison of Gaussian and Flat Top Lasers. Applied Spectroscopy, 2003, 57, 343-348.	1.2	17
138	Automated Line-Focused Laser Ablation for Mapping of Inclusions in Stainless Steel. Applied Spectroscopy, 2003, 57, 1461-1467.	1.2	24
139	Development of a portable laser-induced plasma spectrometer with fully-automated operation and quantitative analysis capabilities. Journal of Analytical Atomic Spectrometry, 2003, 18, 933-938.	1.6	43
140	Nanometric in-depth characterization of P diffusion and TiO2 anti-reflective coatings in solar cells by laser ionization time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2003, 18, 779.	1.6	12
141	Spatial distribution of catalytically active elements and deactivants in diesel-engine automobile converters by laser-induced plasma spectrometryElectronic Supplementary Information available: spectra corresponding to the washcoat and cordierite. See http://www.rsc.org/suppdata/ja/b2/b200975g. Journal of Analytical Atomic Spectrometry, 2002, 17,	1.6	23
142	of laser-induced plasmas. Journal of Analysis of layered samples by time-of-flight mass spectrometry of laser-induced plasmas. Journal of Analytical Atomic Spectrometry, 2002, 17, 929-932.	1.6	6
143	Time-resolved laser-induced plasma spectrometry for determination of minor elements in steelmaking process samples. Analytical and Bioanalytical Chemistry, 2002, 372, 352-359.	1.9	29
144	Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 601-608.	1.5	30

#	Article	IF	CITATIONS
145	Open-path laser-induced plasma spectrometry for remote analytical measurements on solid surfaces. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 591-599.	1.5	85
146	Compositional Mapping of Poisoning Elements in Automobile Three-Way Catalytic Converters by Using Laser-Induced Breakdown Spectrometry. Applied Spectroscopy, 2001, 55, 267-272.	1.2	38
147	Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry. Journal of Analytical Atomic Spectrometry, 2001, 16, 1317-1321.	1.6	63
148	Surface Stoichiometry of Manganin Coatings Prepared by Pulsed Laser Deposition As Described by Laser-Induced Breakdown Spectrometry. Analytical Chemistry, 2001, 73, 1120-1125.	3.2	33
149	Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 177-185.	1.5	55
150	Diagnostics of silicon plasmas produced by visible nanosecond laser ablation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 275-288.	1.5	129
151	Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 923-931.	1.5	33
152	Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 651-659.	1.5	62
153	Study of experimental parameters for improved adsorbate detectability in SERS using etched silver substrates. Surface and Interface Analysis, 2000, 30, 592-596.	0.8	8
154	A microanalytical study of aluminium diffusion in photovoltaic cells using imaging-mode laser-induced breakdown spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1241-1248.	1.5	30
155	Angle-Resolved Laser-Induced Breakdown Spectrometry for Depth Profiling of Coated Materials. Applied Spectroscopy, 2000, 54, 1027-1031.	1.2	57
156	Fast Atomic Mapping of Heterogeneous Surfaces Using Microline-Imaging Laser-Induced Breakdown Spectrometry. Applied Spectroscopy, 2000, 54, 1429-1434.	1.2	25
157	Platinum-group elements: quantification in collected exhaust fumes and studies of catalyst surfaces. Science of the Total Environment, 2000, 257, 1-15.	3.9	206
158	Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities. Journal of Analytical Atomic Spectrometry, 2000, 15, 1321-1327.	1.6	80
159	Saturation effects in the laser ablation of stainless steel in air at atmospheric pressure. Fresenius' Journal of Analytical Chemistry, 1999, 365, 404-408.	1.5	17
160	Effect of surface topography in the characterization of stainless steel using laser-induced breakdown spectrometry. Surface and Interface Analysis, 1999, 27, 805-810.	0.8	34
161	Effect of plasma shielding on laser ablation rate of pure metals at reduced pressure. Surface and Interface Analysis, 1999, 27, 1009-1015.	0.8	94
162	Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures. Journal of Analytical Atomic Spectrometry, 1999, 14, 1883-1887.	1.6	86

#	Article	IF	CITATIONS
163	Mapping of Platinum Group Metals in Automotive Exhaust Three-Way Catalysts Using Laser-Induced Breakdown Spectrometry. Analytical Chemistry, 1999, 71, 4385-4391.	3.2	89
164	Distribution of metal impurities in silicon wafers using imaging-mode multi-elemental laser-induced breakdown spectrometry. Journal of Analytical Atomic Spectrometry, 1999, 14, 199-204.	1.6	44
165	Effect of plasma shielding on laser ablation rate of pure metals at reduced pressure. , 1999, 27, 1009.		1
166	A comparison of surface-enhanced Raman spectroscopic and fluorimetric detection of the phenothiazine derivative trifluoperazine and its photooxidation products. Analytica Chimica Acta, 1998, 369, 197-204.	2.6	7
167	Evaluation of silver substrates for surface-enhanced Raman detection of drugs banned in sport practices. Analytica Chimica Acta, 1998, 376, 255-263.	2.6	27
168	Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure. Surface and Interface Analysis, 1998, 26, 995-1000.	0.8	54
169	Spatial distribution profiles of magnesium and strontium in speleothems using laser-induced breakdown spectrometry. Fresenius' Journal of Analytical Chemistry, 1998, 361, 119-123.	1.5	48
170	Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 723-730.	1.5	256
171	Laser induced breakdown spectrometry of vanadium in titania supported silica catalysts. Talanta, 1998, 47, 143-151.	2.9	20
172	Surface and tomographic distribution of carbon impurities in photonic-grade silicon using laser-induced breakdown spectrometry. Journal of Analytical Atomic Spectrometry, 1998, 13, 557-560.	1.6	45
173	Depth Profiling of Phosphorus in Photonic-Grade Silicon Using Laser-Induced Breakdown Spectrometry. Applied Spectroscopy, 1998, 52, 444-448.	1.2	59
174	Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam. Journal of Analytical Atomic Spectrometry, 1998, 13, 793-797.	1.6	94
175	Depth-resolved Anaylsis of Multilayered Samples by Laser-induced Breakdown Spectrometry. Journal of Analytical Atomic Spectrometry, 1997, 12, 859-862.	1.6	80
176	Multielemental Chemical Imaging Using Laser-Induced Breakdown Spectrometry. Analytical Chemistry, 1997, 69, 2871-2876.	3.2	70
177	Removal of Air Interference in Laser-induced Breakdown Spectrometry Monitored by Spatially and Temporally Resolved Charge-coupled Device Measurements. Journal of Analytical Atomic Spectrometry, 1997, 12, 441-444.	1.6	21
178	Surface-enhanced Raman spectrometry of triamterene on a silver substrate prepared by the nitric acid etching method. Talanta, 1997, 44, 213-220.	2.9	10
179	Determination of trace amounts of carbaryl in water by solid-phase laser-induced fluorescence. Talanta, 1997, 44, 443-449.	2.9	18
180	Detection of atmospheric contaminants in aerosols by surface-enhanced Raman spectrometry. Analytica Chimica Acta, 1997, 355, 15-21.	2.6	27

#	Article	IF	CITATIONS
181	Laser-Induced Breakdown Spectrometry of Titanium Dioxide Antireflection Coatings in Photovoltaic Cells. Analytical Chemistry, 1996, 68, 1095-1100.	3.2	54
182	Laser-induced breakdown spectroscopy of silicate, vanadate and sulfide rocks. Talanta, 1996, 43, 1149-1154.	2.9	47
183	Space and time-resolved laser-induced breakdown spectroscopy using charge-coupled device detection. Fresenius' Journal of Analytical Chemistry, 1996, 355, 10-15.	1.5	49
184	Applications of laser-induced breakdown spectrometry (LIBS) in surface analysis. Analytical and Bioanalytical Chemistry, 1996, 355, 909-912.	1.9	21
185	Surface-enhanced resonance Raman spectroscopy of 2-pyridylhydrazone and 1,10-phenanthroline chelate complexes with metal ions on colloidal silver. Analytica Chimica Acta, 1996, 318, 229-237.	2.6	8
186	Flow-injection analysis and liquid chromatography: surface-enhanced Raman spectrometry detection by using a windowless flow cell. Analytica Chimica Acta, 1996, 318, 203-210.	2.6	57
187	Surface-enhanced Raman spectrometry of chiral β-blocker drugs on colloidal silver. Analytica Chimica Acta, 1996, 335, 87-94.	2.6	31
188	Direct determination of diuretic drugs in urine by capillary zone electrophoresis using fluorescence detection. Biomedical Applications, 1996, 687, 145-150.	1.7	38
189	Fast spatially resolved surface-enhanced Raman spectrometry on a silver coated filter paper using charge-coupled device detection. Analytica Chimica Acta, 1995, 310, 337-345.	2.6	35
190	Evaluation of micellar liquid chromatography and capillary zone electrophoresis for dope control in sport. Mikrochimica Acta, 1995, 118, 273-282.	2.5	12
191	Sample illumination configurations for spatially resolved Raman spectrometry using a charge-coupled device detector. Talanta, 1995, 42, 1379-1383.	2.9	1
192	Determination of antipyrine metabolites in human plasma by solid-phase extraction and micellar liquid chromatography. Analyst, The, 1995, 120, 1729.	1.7	26
193	Imaging and space-resolved spectroscopy in the Xeî—,Cl laser ablation of noble metals with charge-coupled device detection. Analytica Chimica Acta, 1994, 289, 113-120.	2.6	15
194	Surface-enhanced Raman spectrometry on a silver substrate prepared by the nitric acid etching method. Analytica Chimica Acta, 1994, 291, 147-153.	2.6	21
195	Capillary zone electrophoresis for the rapid screening of banned drugs in sport. Electrophoresis, 1994, 15, 240-243.	1.3	24
196	Solvent Effects on Surface-Enhanced Raman Activity of Adsorbates on Colloidal Silver. Applied Spectroscopy, 1994, 48, 219-223.	1.2	7
197	Pulsed-laser fluorescence detection in capillary zone electrophoresis of some banned substances in sport. Analytica Chimica Acta, 1993, 282, 687-693.	2.6	25
198	Surface-enhanced Raman spectrometry of amiloride on colloidal silver. Analytica Chimica Acta, 1993, 280, 263-268.	2.6	9

#	Article	IF	CITATIONS
199	Combining fingerprinting capability with trace analytical detection: surface-enhanced raman spectrometry. Analytica Chimica Acta, 1993, 283, 607-622.	2.6	82
200	Room-temperature phosphorimetry of methylxanthine stimulants on zeolite-modified filter paper substrates. Fresenius' Journal of Analytical Chemistry, 1993, 346, 1003-1007.	1.5	5
201	Surface-enhanced Raman spectrometry for detection in liquid chromatography using a windowless flow cell. Talanta, 1993, 40, 1741-1747.	2.9	28
202	Determination of Dipyrone Metabolites in Human Plasma by Micellar Liquid Chromatography. Journal of Liquid Chromatography and Related Technologies, 1993, 16, 2767-2775.	0.9	5
203	Oil-In-Water Microemulsions as Mobile Phases for Rapid Screening of Illegal Drugs in Sports. Journal of Liquid Chromatography and Related Technologies, 1992, 15, 3115-3127.	0.9	13
204	Improvement in fingerprinting capability of surface enhanced Raman spectrometry by simultaneous measurement of scattering signal and transmitted light. Analytical Chemistry, 1992, 64, 2715-2719.	3.2	13
205	Effect of substrate optical absorption on surface-enhanced Raman spectrometry on colloidal silver. Analytical Chemistry, 1992, 64, 2006-2009.	3.2	13
206	Double exponential phase plane method for decay analysis in room temperature phosphorimetry. Spectrochimica Acta Part A: Molecular Spectroscopy, 1992, 48, 569-575.	0.1	4
207	Solid surface room-temperature phosphorescence analysis of banned substances in sport. Analytica Chimica Acta, 1992, 270, 239-245.	2.6	11
208	Detection of banned drugs in sport by micellar liquid chromatography. Analytica Chimica Acta, 1992, 259, 203-210.	2.6	29
209	Kinetic Determination of Nitrite in Drinking Water by Fluorometry Analytical Sciences, 1991, 7, 467-471.	0.8	13
210	Identification of stimulant drugs by surface-enhanced Raman spectrometry on colloidal silver. Vibrational Spectroscopy, 1991, 2, 145-154.	1.2	45
211	A spatial distribution study of analyte concentration in solid substrate surface-enhanced Raman spectroscopy. Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 329-337.	0.1	7
212	Solid-surface room-temperature phosphorimetric detection of caffeine, theophylline and theobromine in liquid chromatography. Analytica Chimica Acta, 1991, 244, 215-222.	2.6	20
213	Microspectrometric investigation of active substrates for surface enhanced Raman scattering. Analytica Chimica Acta, 1990, 237, 439-450.	2.6	38
214	Electronic signal derivation to improve the performance of kinetic methods of analysis. Analyst, The, 1990, 115, 1617.	1.7	1
215	Surface-enhanced Raman analysis of sulfa drugs on colloidal silver dispersion. Analytical Chemistry, 1990, 62, 689-693.	3.2	63
216	Fingerprinting and activity of sulpha drugs in Surface-enhanced Raman spectrometry on silver hydrosols. Analyst, The, 1990, 115, 1601.	1.7	11

#	Article	IF	CITATIONS
217	Phase Plane Method for Room-Temperature Phosphorescence Lifetime Determination of Single and Double Exponential Decays. Applied Spectroscopy, 1990, 44, 465-469.	1.2	3
218	Mixture analysis and quantitative determination of nitrogen-containing organic molecules by surface-enhanced Raman spectrometry. Analytical Chemistry, 1989, 61, 1697-1701.	3.2	48
219	Evaluation and optimization of experimental conditions for surface-enhanced Raman detection of analytes in flow injection analysis. Microchemical Journal, 1988, 38, 125-136.	2.3	33
220	Constant-energy synchronous, time-resolved, room-temperature phosphorimetry. Microchemical Journal, 1988, 38, 313-321.	2.3	5
221	Surface-enhanced Raman spectrometry on a silver-coated filter paper substrate. Analytica Chimica Acta, 1988, 208, 21-30.	2.6	51
222	Rapid determination of ketanserin in serum by synchronous scanning fluorometry combined with derivative spectroscopy. Microchemical Journal, 1988, 38, 362-369.	2.3	3
223	Analysis by surface enhanced Raman spectroscopy on silver hydrosols and silver coated filter papers. Journal of Pharmaceutical and Biomedical Analysis, 1988, 6, 599-608.	1.4	43
224	Time-Resolved Constant-Energy Synchronous Phosphorimetry. Applied Spectroscopy, 1988, 42, 1112-1117.	1.2	7
225	Spectrophotometric reaction-rate method for the determination of nitrite in waters with pyridine-2-aldehyde 2-pyridylhydrazone. Talanta, 1987, 34, 1021-1026.	2.9	18
226	Quantitative analysis by surface-enhanced Raman spectrometry on silver hydrosols in a flow-injection system. Talanta, 1987, 34, 745-747.	2.9	27
227	Studies of sample preparation for surface-enhanced raman spectrometry on silver hydrosols. Analytica Chimica Acta, 1987, 200, 469-480.	2.6	43
228	Simultaneous Determination of o-Phthalaldehyde Derived Serotonin and Melatonin Using Second Derivative and Synchronized Scanning Fluorimetry. Analytical Letters, 1986, 19, 1097-1106.	1.0	9
229	Kinetic determination of cobalt by complexation with pyridine-2-aldehyde 2-pyridylhydrazone and ligand oxidation with bromate. Mikrochimica Acta, 1985, 86, 457-467.	2.5	1
230	Fluorescence immunoassay for angiotensin I. Analytica Chimica Acta, 1985, 170, 133-137.	2.6	0
231	A fluorimetric kinetic method for the determination of tonin activity in rat submaxillary glands. Microchemical Journal, 1985, 32, 317-323.	2.3	0
232	Coupling of redox and complex formation processes for the kinetic determination of palladium. Analyst, The, 1985, 110, 1339.	1.7	6
233	Coupled redox and complex formation processes as a kinetic fluorimetric method for the determination of cobalt. Fresenius Zeitschrift Für Analytische Chemie, 1983, 315, 491-495.	0.7	5
234	Selective spectrofluorimetric determination of zinc with benzyl 2-pyridyl ketone 2-quinolylhydrazone and its application to sea-water analyses. Mikrochimica Acta, 1983, 80, 197-204.	2.5	5

#	Article	IF	CITATIONS
235	Selective fluorimetric determination of nanogram amounts of zinc in workplace fumes. Analytica Chimica Acta, 1983, 147, 303-309.	2.6	6
236	Kinetic fluorimetric determination of inorganic species by bromate oxidation of chelating agent and complexation with metal ions. Analytical Chemistry, 1983, 55, 253-256.	3.2	14
237	Iron(III) as activator for catalytic fluorimetric microdetermination of V(V). Talanta, 1982, 29, 615-618.	2.9	11
238	Benzyl 2-pyridyl ketone 2-pyridylhydrazone as reagent for the fluorimetric determination of zinc at ng/ml levels. Talanta, 1982, 29, 511-514.	2.9	6
239	Spectrophotometric determination of cobalt in paints and environmental paint samples. Analyst, The, 1982, 107, 35-40.	1.7	6
240	Studies on ground and excited state prototropic equilibria of 2-fluorenaldehyde 2-pyridylhydrazone. Journal of Luminescence, 1982, 26, 427-435.	1.5	3
241	Kinetic-fluorimetric determination of magnesium in micellar medium. Microchemical Journal, 1982, 27, 312-318.	2.3	2
242	A Spectrofluorimetric Method For Renin. Comparison With Bioassay And Radioimmunoassay. Analytical Letters, 1981, 14, 1669-1678.	1.0	1
243	Spectrofluorimetric Determination of Nanogram Amounts of Cadmium with Benzyl-2-Pyridylketone 2-Pyridylhydrazone. Analytical Letters, 1981, 14, 833-840.	1.0	3
244	A fluorimetric method for the determination of traces of gallium. Analytica Chimica Acta, 1980, 121, 295-300.	2.6	9
245	Chemical imaging of surfaces using LIBS. , 0, , 254-281.		Ο