List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3666306/publications.pdf Version: 2024-02-01

VV KOBELEV

#	Article	IF	CITATIONS
1	Closed-form solution for optimization of buckling column. Mechanics Based Design of Structures and Machines, 2023, 51, 5596-5635.	4.7	2
2	Rule and optimization-based selection of car body parts for the application of tailor rolled blank technology. Structural and Multidisciplinary Optimization, 2022, 65, 1.	3.5	6
3	Stability optimization for a simultaneously twisted and compressed rod. Multidiscipline Modeling in Materials and Structures, 2022, 18, 24-42.	1.3	1
4	Stress Distributions Over Cross-Section of Wires. , 2021, , 35-63.		0
5	Creep and Relaxation of Springs. , 2021, , 227-273.		0
6	"Equivalent Columns―for Helical Springs. , 2021, , 65-97.		0
7	Failure Analysis Based on Weakest Link Concept. , 2021, , 359-372.		Ο
8	Statistical Effects on Fatigue of Spring Materials. , 2021, , 373-417.		0
9	Fatigue of Spring Materials. , 2021, , 275-304.		Ο
10	Coiling of Helical Springs. , 2021, , 161-179.		0
11	Presetting and Residual Stresses in Springs. , 2021, , 181-225.		0
12	Thin-Walled Rods with Semi-opened Profiles. , 2021, , 131-159.		0
13	Principles of Spring Design. , 2021, , 1-34.		Ο
14	Scaleâ€deviating operators of Riesz type and the spaces of variable dimensions. Computational and Mathematical Methods, 2021, 3, e1174.	0.8	0
15	Factors Affecting the Fatigue Life of Springs. , 2021, , 305-357.		Ο
16	Durability of Springs. , 2021, , .		5
17	Delayed presetting of helical springs. Mechanics Based Design of Structures and Machines, 2020, 48, 122-132.	4.7	4
18	Comment on "Minimization of maximum failure criterion of laminated composite shell structure by optimizing distributed-material orientation―by Shimoda M., Muramatsu Y., Tsukihara R Structural and Multidisciplinary Optimization, 2020, 62, 1019-1024.	3.5	0

#	Article	IF	CITATIONS
19	Nonâ€Leibniz Hamiltonian and Lagrangian formalisms for certain class of dissipative systems. Computational and Mathematical Methods, 2019, 1, e1035.	0.8	3
20	Approximate static aeroelastic analysis of composite wings. Multidiscipline Modeling in Materials and Structures, 2019, 15, 365-386.	1.3	1
21	Elastic–plastic deformation and residual stresses in helical springs. Multidiscipline Modeling in Materials and Structures, 2019, 16, 448-475.	1.3	3
22	Mechanics with nonâ€Leibniz derivatives. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800002.	0.2	1
23	Durability of Springs. , 2018, , .		10
24	Creep and Relaxation of Springs. , 2018, , 129-158.		0
25	Disk Springs. , 2018, , 93-127.		0
26	Stress Distributions Over Cross-Section of Wires. , 2018, , 27-43.		0
27	Thin-Walled Rods with Semi-Opened Profiles. , 2018, , 229-243.		0
28	Principles of Spring Design. , 2018, , 1-25.		0
29	Coiling Process for Helical Springs. , 2018, , 75-92.		0
30	"Equivalent Columns―for Helical Springs. , 2018, , 45-73.		0
31	Fatigue of Spring Materials. , 2018, , 173-213.		0
32	Generalizations of Creep Laws for Spring Materials. , 2018, , 159-171.		0
33	Some exact analytical solutions in structural optimization. Mechanics Based Design of Structures and Machines, 2017, 45, 43-61.	4.7	7
34	The lightest pressure vessel. Meccanica, 2017, 52, 483-486.	2.0	3
35	Optimization of load-transfer and load-diffusion. Structural and Multidisciplinary Optimization, 2017, 56, 89-99.	3.5	1
36	The anisotropic pressure vessel of minimal mass. Structural and Multidisciplinary Optimization, 2017, 55, 375-380.	3.5	4

#	Article	IF	CITATIONS
37	Weakest link concept for springs fatigue. Mechanics Based Design of Structures and Machines, 2017, 45, 523-543.	4.7	10
38	Unification proposals for fatigue crack propagation laws. Multidiscipline Modeling in Materials and Structures, 2017, 13, 262-283.	1.3	3
39	A proposal for unification of fatigue crack growth law. Journal of Physics: Conference Series, 2017, 843, 012022.	0.4	3
40	Lattice of infinite bending-resistant fibers. Multidiscipline Modeling in Materials and Structures, 2016, 12, 397-422.	1.3	0
41	Exact shell solutions for conical springs. Mechanics Based Design of Structures and Machines, 2016, 44, 317-339.	4.7	15
42	Addendum to "relaxation and creep in twist and flexure― Multidiscipline Modeling in Materials and Structures, 2016, 12, 473-477.	1.3	2
43	Isoperimetric inequality in the periodic Greenhill Problem of twisted elastic rod. Structural and Multidisciplinary Optimization, 2016, 54, 133-136.	3.5	1
44	Topological derivatives for fundamental frequencies of elastic bodies. Engineering Optimization, 2016, 48, 53-72.	2.6	2
45	The extreme property of twisted spherical shell. Structural and Multidisciplinary Optimization, 2016, 53, 123-127.	3.5	0
46	Relaxation and creep in twist and flexure. Multidiscipline Modeling in Materials and Structures, 2014, 10, 304-327.	1.3	5
47	Effect of static axial compression on the natural frequencies of helical springs. Multidiscipline Modeling in Materials and Structures, 2014, 10, 379-398.	1.3	10
48	Comment to the Article "Several Examples of Application of Nash and Pareto Approaches to Multiobjective Structural Optimization with Uncertainties―of N. V. Banichuk, F. Ragnedda, M. Serra. Mechanics Based Design of Structures and Machines, 2014, 42, 130-133.	4.7	0
49	Some basic solutions for nonlinear creep. International Journal of Solids and Structures, 2014, 51, 3372-3381.	2.7	26
50	Topological derivatives for fundamental frequencies of elastic bodies. , 2014, , 485-490.		0
51	PARETO and NASH fronts as the limit case of the isoperimetric inequality in multiobjective optimization theory. , 2014, , 165-167.		Ο
52	Thin-Walled Rods With Semiopened Profiles. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	1
53	Thin-walled rods with semi-open profile for semi-solid automotive suspension. International Journal of Automotive Technology, 2012, 13, 231-245.	1.4	8
54	Confirmation of Lagrange hypothesis for twisted elastic rod. Structural and Multidisciplinary Optimization, 2012, 46, 155-157.	3.5	2

V V KOBELEV

#	Article	IF	CITATIONS
55	On the Lagrangian and instability of medium with defects. Meccanica, 2012, 47, 745-753.	2.0	2
56	Elastoplastic Stress Analysis and Residual Stresses in Cylindrical Bar Under Combined Bending and Torsion. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2011, 133, .	2.2	10
57	"Bubble-and-grain―method and criteria for optimal positioning inhomogeneities in topological optimization. Structural and Multidisciplinary Optimization, 2010, 40, 117-135.	3.5	11
58	Theory of optimal residual stresses and defects distribution. Structural and Multidisciplinary Optimization, 2010, 41, 351-370.	3.5	2
59	Comments on "Shape and topology optimization for periodic problems part I: the shape and the topological derivativeâ€. Structural and Multidisciplinary Optimization, 2010, 42, 481-481.	3.5	0
60	Elastic-plastic work-hardening deformation under combined bending and torsion and residual stresses in helical springs. International Journal of Material Forming, 2010, 3, 869-881.	2.0	8
61	Linear nonâ€conservative systems with fractional damping and the derivatives of critical load parameter. GAMM Mitteilungen, 2007, 30, 287-299.	5.5	2
62	Sensitivity analysis of the linear nonconservative systems with fractional damping. Structural and Multidisciplinary Optimization, 2007, 33, 179-188.	3.5	4
63	The variant of post-Newtonian mechanics with generalized fractional derivatives. Chaos, 2006, 16, 043117.	2.5	5
64	Mircopolar Model of Fracture for Composite Material. Meccanica, 2006, 41, 653-660.	2.0	7
65	An Exact Solution of Torsion Problem for an Incomplete Torus with Application to Helical Springs. Meccanica, 2002, 37, 269-282.	2.0	6
66	Design and optimization of elastic nonlinear helical springs. , 1998, , .		0
67	Bubble method for topology and shape optimization of structures. Structural Optimization, 1994, 8, 42-51.	0.6	498
68	Explicit crack problem solutions of hybrid composites. International Journal of Solids and Structures, 1993, 30, 413-426.	2.7	3
69	A structural model of ceramics: Multiple fracture. Meccanica, 1993, 28, 209-215.	2.0	0
70	Isoperimetric inequalities in optimal structural design. Structural Optimization, 1993, 6, 38-51.	0.6	1
71	On a game approach to optimal structural design. Structural Optimization, 1993, 6, 194-199.	0.6	9

72 Isoperimetric Inequalities in Stability Problems. , 1993, , 1155-1164.

1

#	Article	IF	CITATIONS
73	Microstructural Model of a Fibrous Composite Fracture. Mechanics Based Design of Structures and Machines, 1992, 20, 1-16.	0.6	1
74	Structural analysis and optimization modelling including fracture conditions. International Journal for Numerical Methods in Engineering, 1992, 34, 873-888.	2.8	1
75	A Structural Model of Ceramic Deformation and Fractureâ^—. Mechanics Based Design of Structures and Machines, 1991, 19, 251-279.	0.6	1
76	Shape Optimization Using Boundary Elements. Lecture Notes in Engineering, 1991, , 165-171.	0.1	0
77	Rational bounding in the problem of the plane stress state of an ideal fiber composite. Journal of Applied Mechanics and Technical Physics, 1990, 31, 306-310.	0.5	0
78	Pull-out of fibers from the matrix on the surface of a crack in a composite. Mechanics of Composite Materials, 1990, 26, 188-197.	1.4	0
79	Fragmentation of a composite material and fragmentation of fibres under a dynamic load. Prikladnaya Matematika I Mekhanika, 1990, 54, 577-581.	0.4	0
80	Isoperimetric Inequalities in the Anisotropic Rod Torsion Problemâ^—. Mechanics Based Design of Structures and Machines, 1990, 18, 151-158.	0.6	0
81	Numerical method for shape optimization using BEM. Computers and Structures, 1989, 33, 1223-1227.	4.4	2
82	An isoperimetric inequality in the optimization of circular rings under normal pressure. Journal of Optimization Theory and Applications, 1989, 61, 403-408.	1,5	1
83	Integral Equation Methods in the Internal Structure Optimization. Lecture Notes in Engineering, 1989, , 202-209.	0.1	0
84	Isoperimetric inequality in the problem of the stability of a circular ring under normal pressure. Prikladnaya Matematika I Mekhanika, 1988, 52, 683-685.	0.4	0
85	Fracture of fibers by a crack propagating in a composite. Mechanics of Composite Materials, 1988, 24, 180-188.	1.4	0
86	Model of thin-walled anisotropic rods. Mechanics of Composite Materials, 1988, 24, 97-104.	1.4	7
87	On optimal plastic anisotropy. Prikladnaya Matematika I Mekhanika, 1987, 51, 381-385.	0.4	5
88	Rational schemes for reinforcing laminar plates from composite materials. Prikladnaya Matematika I Mekhanika, 1984, 48, 40-49.	0.4	0
89	Analytical solutions to problems of optimum reinforcement for multilayer plates made of composite materials, Mechanics of Composite Materials, 1984, 19, 571-576.	1.4	2
90	Optimization of structures made of randomly reinforced composites. Mechanics of Composite Materials, 1982, 17, 466-473.	1.4	2

#	Article	IF	CITATIONS
91	Optimizing the effective characteristics of granular composites in component-design problems. Mechanics of Composite Materials, 1981, 17, 175-180.	1.4	2
92	Ferromagnetic Films in Nonuniform Fields. Physica Status Solidi (B): Basic Research, 1966, 17, 381-388.	1.5	10