Michel Bouvier

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3665563/michel-bouvier-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 21,505 270 141 h-index g-index citations papers 6.74 23,664 8.4 296 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
270	Structural Elements Directing G Proteins and EArrestin Interactions with the Human Melatonin Type 2 Receptor Revealed by Natural Variants. <i>ACS Pharmacology and Translational Science</i> , 2022 , 5, 89-	-1509	1
269	Community Guidelines for GPCR Ligand Bias: IUPHAR Review XX <i>British Journal of Pharmacology</i> , 2022 ,	8.6	10
268	Angiotensin II Type 1 Receptor Tachyphylaxis Is Defined by Agonist Residence Time. <i>Hypertension</i> , 2022 , 79, 115-125	8.5	
267	Common coupling map advances GPCR-G protein selectivity ELife, 2022, 11,	8.9	4
266	Effector membrane translocation biosensors reveal G protein and arrestin coupling profiles of 100 therapeutically relevant GPCRs <i>ELife</i> , 2022 , 11,	8.9	10
265	The pocketome of G-protein-coupled receptors reveals previously untargeted allosteric sites <i>Nature Communications</i> , 2022 , 13, 2567	17.4	2
264	GPCR activation mechanisms across classes and macro/microscales. <i>Nature Structural and Molecular Biology</i> , 2021 , 28, 879-888	17.6	10
263	Identifying Plasmodium falciparum receptor activation using bioluminescence resonance energy transfer (BRET)-based biosensors in HEK293 cells. <i>Methods in Cell Biology</i> , 2021 , 166, 223-233	1.8	
262	Proadrenomedullin N-Terminal 20 Peptides (PAMPs) Are Agonists of the Chemokine Scavenger Receptor ACKR3/CXCR7. <i>ACS Pharmacology and Translational Science</i> , 2021 , 4, 813-823	5.9	2
261	Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple cellular mechanisms involved in weight regulation. <i>Cell Reports</i> , 2021 , 34, 108862	10.6	12
260	In Vitro and In Vivo Evaluation of a Small-Molecule APJ (Apelin Receptor) Agonist, BMS-986224, as a Potential Treatment for Heart Failure. <i>Circulation: Heart Failure</i> , 2021 , 14, e007351	7.6	10
259	The RanBP2/RanGAP1-SUMO complex gates Earrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis. <i>Oncogene</i> , 2021 , 40, 2243-2257	9.2	4
258	Development of conformational BRET biosensors that monitor ezrin, radixin and moesin activation in real time. <i>Journal of Cell Science</i> , 2021 , 134,	5.3	2
257	BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated G activation at early endosomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
256	Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. <i>Cell Reports</i> , 2021 , 35, 109246	10.6	6
255	Novel potent (dihydro)benzofuranyl piperazines as human histamine receptor ligands - Functional characterization and modeling studies on H and H receptors. <i>Bioorganic and Medicinal Chemistry</i> , 2021 , 30, 115924	3.4	3
254	Structure-Activity Relationship and Bioactivity of Short Analogues of ELABELA as Agonists of the Apelin Receptor. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 602-615	8.3	1

(2020-2021)

253	Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity. <i>JCI Insight</i> , 2021 , 6,	9.9	2
252	Bioluminescence Resonance Energy Transfer (BRET) Imaging in Living Cells: Image Acquisition and Quantification. <i>Methods in Molecular Biology</i> , 2021 , 2274, 305-314	1.4	2
251	Mechanistic insights into dopaminergic and serotonergic neurotransmission - concerted interactions with helices 5 and 6 drive the functional outcome. <i>Chemical Science</i> , 2021 , 12, 10990-11003	9.4	3
250	Feedback control of the Gpr161-G-PKA axis contributes to basal Hedgehog repression in zebrafish. <i>Development (Cambridge)</i> , 2021 , 148,	6.6	3
249	Constraining the Side Chain of C-Terminal Amino Acids in Apelin-13 Greatly Increases Affinity, Modulates Signaling, and Improves the Pharmacokinetic Profile. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 5345-5364	8.3	3
248	Selective release of gastrointestinal hormones induced by an orally active GPR39 agonist. <i>Molecular Metabolism</i> , 2021 , 49, 101207	8.8	2
247	Cryo-EM structure of constitutively active human Frizzled 7 in complex with heterotrimeric G. <i>Cell Research</i> , 2021 , 31, 1311-1314	24.7	6
246	Selective FPR2 Agonism Promotes a Proresolution Macrophage Phenotype and Improves Cardiac Structure-Function Post Myocardial Infarction. <i>JACC Basic To Translational Science</i> , 2021 , 6, 676-689	8.7	7
245	Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen. <i>Nature Communications</i> , 2021 , 12, 4688	17.4	1
244	Illuminating the complexity of GPCR pathway selectivity - advances in biosensor development. <i>Current Opinion in Structural Biology</i> , 2021 , 69, 142-149	8.1	11
243	Bivalent ligands promote endosomal trafficking of the dopamine D3 receptor-neurotensin receptor 1 heterodimer. <i>Communications Biology</i> , 2021 , 4, 1062	6.7	2
242	Comprehensive Signaling Profiles Reveal Unsuspected Functional Selectivity of Expioid Receptor Agonists and Allow the Identification of Ligands with the Greatest Potential for Inducing Cyclase Superactivation. ACS Pharmacology and Translational Science, 2021, 4, 1483-1498	5.9	1
241	Ackr3-Venus knock-in mouse lights up brain vasculature. <i>Molecular Brain</i> , 2021 , 14, 151	4.5	O
240	Signal Transduction Profiling of Angiotensin II Type 1 Receptor With Mutations Associated to Atrial Fibrillation in Humans. <i>Frontiers in Pharmacology</i> , 2020 , 11, 600132	5.6	3
239	How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling. Cell, 2020, 183, 1813-182	2 56e 18	3 35
238	The PAR2 inhibitor I-287 selectively targets Gand Gaignaling and has anti-inflammatory effects. <i>Communications Biology</i> , 2020 , 3, 719	6.7	10
237	NF45 and NF90 Regulate Mitotic Gene Expression by Competing with Staufen-Mediated mRNA Decay. <i>Cell Reports</i> , 2020 , 31, 107660	10.6	6
236	Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. <i>Cellular and Molecular Life Sciences</i> , 2020 , 77, 5259-5279	10.3	2

235	Genetically encoded intrabody sensors report the interaction and trafficking of Earrestin 1 upon activation of G-protein-coupled receptors. <i>Journal of Biological Chemistry</i> , 2020 , 295, 10153-10167	5.4	15
234	Barbadin selectively modulates FPR2-mediated neutrophil functions independent of receptor endocytosis. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2020 , 1867, 118849	4.9	5
233	Circadian, Sleep and Caloric Intake Phenotyping in Type 2 Diabetes Patients With Rare Melatonin Receptor 2 Mutations and Controls: A Pilot Study. <i>Frontiers in Physiology</i> , 2020 , 11, 564140	4.6	5
232	Dissecting the roles of GRK2 and GRK3 in Eppioid receptor internalization and Earrestin2 recruitment using CRISPR/Cas9-edited HEK293 cells. <i>Scientific Reports</i> , 2020 , 10, 17395	4.9	13
231	Signal profiling of the AR reveals coupling to novel signalling pathways and distinct phenotypic responses mediated by AR and AR. <i>Scientific Reports</i> , 2020 , 10, 8779	4.9	10
230	Agonist-induced formation of unproductive receptor-G complexes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 21723-21730	11.5	13
229	Biased agonism of clinically approved Eppioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics. <i>Neuropharmacology</i> , 2020 , 166, 107718	5.5	35
228	Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response. <i>Nature Communications</i> , 2019 , 10, 4075	17.4	20
227	Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 13006-13015	11.5	26
226	Hybridization of EAdrenergic Agonists and Antagonists Confers G Protein Bias. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 5111-5131	8.3	5
225	Chemogenetics defines receptor-mediated functions of short chain free fatty acids. <i>Nature Chemical Biology</i> , 2019 , 15, 489-498	11.7	29
224	Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells. <i>Nature Protocols</i> , 2019 , 14, 1084-1107	18.8	43
223	Agonist-induced desensitisation of <code>Gadrenoceptors</code> : Where, when, and how?. <i>British Journal of Pharmacology</i> , 2019 , 176, 2539-2558	8.6	13
222	Biased Signaling of the Mu Opioid Receptor Revealed in Native Neurons. <i>IScience</i> , 2019 , 14, 47-57	6.1	46
221	Structural Insight into G Protein-Coupled Receptor Signaling Efficacy and Bias between Gs and EArrestin. <i>ACS Pharmacology and Translational Science</i> , 2019 , 2, 148-154	5.9	11
220	Discovery of Potent Protease-Activated Receptor 4 Antagonists with in Vivo Antithrombotic Efficacy. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 7400-7416	8.3	6
219	Vasopressin and oxytocin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. <i>IUPHAR/BPS Guide To Pharmacology CITE</i> , 2019 , 2019,	1.7	3
218	Monitoring Signalling and Trafficking of Neurotensin Type 1 Receptor in Animal Model using Fluorescent-based Methods. <i>FASEB Journal</i> , 2019 , 33, 502.4	0.9	

217	Preservation of Post-Infarction Cardiac Structure and Function via Long-Term Oral Formyl Peptide Receptor Agonist Treatment. <i>JACC Basic To Translational Science</i> , 2019 , 4, 905-920	8.7	16
216	Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2653-E2662	11.5	8
215	Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors. <i>Trends in Biochemical Sciences</i> , 2018 , 43, 533-546	10.3	24
214	Type 2 diabetes-associated variants of the MT melatonin receptor affect distinct modes of signaling. <i>Science Signaling</i> , 2018 , 11,	8.8	33
213	Identification of key regions mediating human melatonin type 1 receptor biased signaling revealed by natural variants. <i>FASEB Journal</i> , 2018 , 32, 555.10	0.9	
212	Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing. <i>Brain Structure and Function</i> , 2018 , 223, 1275-1296	4	15
211	Spatiotemporal regulation of the GPCR activity of BAI3 by C1qL4 and Stabilin-2 controls myoblast fusion. <i>Nature Communications</i> , 2018 , 9, 4470	17.4	25
2 10	FZD is a GE oupled receptor that exhibits the functional hallmarks of prototypical GPCRs. <i>Science Signaling</i> , 2018 , 11,	8.8	29
209	Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. <i>Science Signaling</i> , 2018 , 11,	8.8	59
208	Manifold roles of ⊞rrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. <i>Science Signaling</i> , 2018 , 11,	8.8	116
207	Translating biased signaling in the ghrelin receptor system into differential in vivo functions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10255-E102	2 6 4·5	31
206	Structural insights into binding specificity, efficacy and bias of a AR partial agonist. <i>Nature Chemical Biology</i> , 2018 , 14, 1059-1066	11.7	96
205	Bioluminescence resonance energy transfer-based biosensors allow monitoring of ligand- and transducer-mediated GPCR conformational changes. <i>Communications Biology</i> , 2018 , 1, 106	6.7	17
204	Distinct conformations of GPCR-Farrestin complexes mediate desensitization, signaling, and endocytosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 2562-2567	11.5	194
203	Predicting phenotype from genotype: Improving accuracy through more robust experimental and computational modeling. <i>Human Mutation</i> , 2017 , 38, 569-580	4.7	25
202	Discovery of G Protein-Biased Dopaminergics with a Pyrazolo[1,5-a]pyridine Substructure. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 2908-2929	8.3	38
201	A new inhibitor of the Earrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. <i>Nature Communications</i> , 2017 , 8, 15054	17.4	73
200	Purinergic Receptor Transactivation by the -Adrenergic Receptor Increases Intracellular Ca in Nonexcitable Cells. <i>Molecular Pharmacology</i> , 2017 , 91, 533-544	4.3	32

199	Systematic protein-protein interaction mapping for clinically relevant human GPCRs. <i>Molecular Systems Biology</i> , 2017 , 13, 918	12.2	44
198	KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents. <i>Journal of Neuroscience</i> , 2017 , 37, 1162-1175	6.6	26
197	Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	81
196	Ang-(1-7) is an endogenous threstin-biased agonist of the AT receptor with protective action in cardiac hypertrophy. <i>Scientific Reports</i> , 2017 , 7, 11903	4.9	57
195	Functional New World monkey oxytocin forms elicit an altered signaling profile and promotes parental care in rats. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9044-9049	11.5	22
194	Older adults with heart failure treated with carvedilol, bisoprolol, or metoprolol tartrate: risk of mortality. <i>Pharmacoepidemiology and Drug Safety</i> , 2017 , 26, 81-90	2.6	3
193	Evolutionary action and structural basis of the allosteric switch controlling AR functional selectivity. <i>Nature Communications</i> , 2017 , 8, 2169	17.4	38
192	Pharmacological Characterization of 5-Substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel Antagonists for the Histamine H and H Receptors with Anti-inflammatory Potential. <i>Frontiers in Pharmacology</i> , 2017 , 8, 825	5.6	14
191	Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. <i>Nature</i> , 2016 , 536, 484-7	50.4	184
190	A Pluridimensional View of Biased Agonism. <i>Molecular Pharmacology</i> , 2016 , 90, 587-595	4.3	79
189	Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 4524-9	11.5	35
188	Monitoring G protein-coupled receptor and Earrestin trafficking in live cells using enhanced bystander BRET. <i>Nature Communications</i> , 2016 , 7, 12178	17.4	140
187	Post-endocytotic Deubiquitination and Degradation of the Metabotropic Elaminobutyric Acid Receptor by the Ubiquitin-specific Protease 14. <i>Journal of Biological Chemistry</i> , 2016 , 291, 7156-70	5.4	14
186	Cellular and subcellular context determine outputs from signaling biosensors. <i>Methods in Cell Biology</i> , 2016 , 132, 319-37	1.8	7
185	GPCR-G Protein-EArrestin Super-Complex Mediates Sustained G Protein Signaling. Cell, 2016, 166, 907-9	91596.2	324
184	A Perspective on Studying G-Protein-Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms. <i>Molecular Pharmacology</i> , 2015 , 88, 589-95	4.3	25
183	EArrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1. <i>Journal of Biological Chemistry</i> , 2015 , 290, 21131-21140	5.4	61
182	Receptor sequestration in response to Earrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E5160-8	11.5	32

(2013-2015)

181	Comparative analyses of downstream signal transduction targets modulated after activation of the AT1 receptor by two Earrestin-biased agonists. <i>Frontiers in Pharmacology</i> , 2015 , 6, 131	5.6	19
180	The experimental power of FR900359 to study Gq-regulated biological processes. <i>Nature Communications</i> , 2015 , 6, 10156	17.4	190
179	Transcriptome Analysis Reveals That G Protein-Coupled Receptors Are Potential Diagnostic Markers or Therapeutic Targets in Acute Myeloid Leukemia. <i>Blood</i> , 2015 , 126, 3855-3855	2.2	2
178	CrossTalk proposal: Weighing the evidence for Class A GPCR dimers, the evidence favours dimers. <i>Journal of Physiology</i> , 2014 , 592, 2439-41	3.9	51
177	A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells. <i>Nature Communications</i> , 2014 , 5, 4431	17.4	17
176	Development and characterization of pepducins as Gs-biased allosteric agonists. <i>Journal of Biological Chemistry</i> , 2014 , 289, 35668-84	5.4	56
175	Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. <i>Journal of Biological Chemistry</i> , 2014 , 289, 252	6 2 -75	30
174	Biased signaling favoring gi over Errestin promoted by an apelin fragment lacking the C-terminal phenylalanine. <i>Journal of Biological Chemistry</i> , 2014 , 289, 24599-610	5.4	54
173	The chemokine CXC4 and CC2 receptors form homo- and heterooligomers that can engage their signaling G-protein effectors and Brrestin. <i>FASEB Journal</i> , 2014 , 28, 4509-23	0.9	35
172	N-Glycan-dependent and -independent quality control of human Epioid receptor N-terminal variants. <i>Journal of Biological Chemistry</i> , 2014 , 289, 17830-42	5.4	8
171	Novel Screening Paradigms for the Identification of Allosteric Modulators and/or Biased Ligands for Challenging G-Protein-Coupled Receptors. <i>Annual Reports in Medicinal Chemistry</i> , 2014 , 49, 285-300	1.6	3
170	Quantification of ligand bias for clinically relevant 2 -adrenergic receptor ligands: implications for drug taxonomy. <i>Molecular Pharmacology</i> , 2014 , 85, 492-509	4.3	165
169	Rebuttal from Michel Bouvier and Terence E. HBert. <i>Journal of Physiology</i> , 2014 , 592, 2447	3.9	13
168	CNIH4 interacts with newly synthesized GPCR and controls their export from the endoplasmic reticulum. <i>Traffic</i> , 2014 , 15, 383-400	5.7	35
167	Ligand bias prevents class equality among beta-blockers. <i>Current Opinion in Pharmacology</i> , 2014 , 16, 50-7	5.1	26
166	Probing the Functional Selectivity of Endrenergic Receptors Reveals New Signaling Modes and Potential Therapeutic Applications 2014 , 112		
165	Technology combination to address GPCR allosteric modulator drug-discovery pitfalls. <i>Drug Discovery Today: Technologies</i> , 2013 , 10, e261-7	7.1	10
164	Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. <i>Nature Chemical Biology</i> , 2013 , 9, 428-36	11.7	120

163	Bioinactive ACTH causing glucocorticoid deficiency. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2013 , 98, 736-42	5.6	39
162	Conformational dynamics of Kir3.1/Kir3.2 channel activation via Eppioid receptors. <i>Molecular Pharmacology</i> , 2013 , 83, 416-28	4.3	42
161	Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E5088-97	11.5	114
160	Role of the GRK2 extreme amino terminus and active site tether in forming G protein-coupled receptor docking site. <i>FASEB Journal</i> , 2013 , 27, 1040.1	0.9	
159	Differential Errestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. <i>Science Signaling</i> , 2012 , 5, ra33	8.8	119
158	Restructuring G-protein- coupled receptor activation. <i>Cell</i> , 2012 , 151, 14-23	56.2	208
157	Cys-27 variant of human Eppioid receptor modulates maturation and cell surface delivery of Phe-27 variant via heteromerization. <i>Journal of Biological Chemistry</i> , 2012 , 287, 5008-20	5.4	17
156	Identification and characterization of an activating F229V substitution in the V2 vasopressin receptor in an infant with NSIAD. <i>Journal of the American Society of Nephrology: JASN</i> , 2012 , 23, 1635-40	0 ^{12.7}	36
155	Engagement of Earrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E1028-37	11.5	37
154	Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. <i>Journal of Biological Chemistry</i> , 2012 , 287, 3617-29	5.4	117
153	Impedance responses reveal Endrenergic receptor signaling pluridimensionality and allow classification of ligands with distinct signaling profiles. <i>PLoS ONE</i> , 2012 , 7, e29420	3.7	77
152	Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. <i>Expert Opinion on Drug Discovery</i> , 2011 , 6, 811-25	6.2	61
151	G protein-coupled receptor modulation with pepducins: moving closer to the clinic. <i>Annals of the New York Academy of Sciences</i> , 2011 , 1226, 34-49	6.5	36
150	PKA regulatory subunits mediate synergy among conserved G-protein-coupled receptor cascades. <i>Nature Communications</i> , 2011 , 2, 598	17.4	34
149	Contribution of Kv1.2 voltage-gated potassium channel to D2 autoreceptor regulation of axonal dopamine overflow. <i>Journal of Biological Chemistry</i> , 2011 , 286, 9360-72	5.4	32
148	A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. <i>Science Signaling</i> , 2011 , 4, ra60	8.8	104
147	Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). <i>Journal of Biological Chemistry</i> , 2011 , 286, 24638-48	5.4	109
146	mBecine/sciences2011. <i>Medecine/Sciences</i> , 2011 , 27, 3-4		

145	Multimerization of Staufen1 in live cells. Rna, 2010, 16, 585-97	5.8	39
144	Pharmacological chaperones restore function to MC4R mutants responsible for severe early-onset obesity. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2010 , 335, 520-32	4.7	61
143	Functional characterization of vasopressin type 2 receptor substitutions (R137H/C/L) leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments. <i>Molecular Pharmacology</i> , 2010 , 77, 836-45	4.3	50
142	Protein-protein interactions monitored in cells from transgenic mice using bioluminescence resonance energy transfer. <i>FASEB Journal</i> , 2010 , 24, 2829-38	0.9	27
141	Vasopressin type 2 receptor V88M mutation: molecular basis of partial and complete nephrogenic diabetes insipidus. <i>Nephron Physiology</i> , 2010 , 114, p1-10		37
140	Receptor-regulated interaction of activator of G-protein signaling-4 and Galphai. <i>Journal of Biological Chemistry</i> , 2010 , 285, 20588-94	5.4	33
139	Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. <i>Journal of Biological Chemistry</i> , 2010 , 285, 7805-17	5.4	198
138	Regulation of the AGS3IG{alpha}i signaling complex by a seven-transmembrane span receptor. Journal of Biological Chemistry, 2010 , 285, 33949-58	5.4	32
137	A novel biased allosteric compound inhibitor of parturition selectively impedes the prostaglandin F2alpha-mediated Rho/ROCK signaling pathway. <i>Journal of Biological Chemistry</i> , 2010 , 285, 25624-36	5.4	74
136	Combining resonance energy transfer methods reveals a complex between the alpha2A-adrenergic receptor, Galphai1beta1gamma2, and GRK2. <i>FASEB Journal</i> , 2010 , 24, 4733-43	0.9	21
135	GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base. <i>Bioinformatics</i> , 2010 , 26, 1804-	57.2	71
134	Sensory neuron-specific MAS-related gene-X1 receptors resist agonist-promoted endocytosis. <i>Molecular Pharmacology</i> , 2010 , 78, 249-59	4.3	18
133	Multiplexing of multicolor bioluminescence resonance energy transfer. <i>Biophysical Journal</i> , 2010 , 99, 4037-46	2.9	67
132	Pharmacological Chaperones: Potential for the Treatment of Hereditary Diseases Caused by Mutations in G Protein-Coupled Receptors 2010 , 460-510		2
131	An evolutionarily conserved autoinhibitory molecular switch in ELMO proteins regulates Rac signaling. <i>Current Biology</i> , 2010 , 20, 2021-7	6.3	42
130	RECEPTOR-REGULATED INTERACTION OF ACTIVATOR OF G-PROTEIN SIGNALING 4 AND GIALPHA. <i>FASEB Journal</i> , 2010 , 24, 587.8	0.9	
129	COUPLING OF A G-PROTEIN COUPLED RECEPTOR TO THE AGS3-Galphai SIGNALING COMPLEX. <i>FASEB Journal</i> , 2010 , 24, 587.7	0.9	
128	Combining resonance energy transfer methods reveals a complex between the A-adrenergic receptor, G祖 四, and GRK2. <i>FASEB Journal</i> , 2010 , 24, 4733-4743	0.9	2

127	Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways. <i>Molecular Pharmacology</i> , 2009 , 76, 791-801	4.3	83
126	Functional selectivity of natural and synthetic prostaglandin EP4 receptor ligands. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2009 , 331, 297-307	4.7	84
125	Building a new conceptual framework for receptor heteromers. <i>Nature Chemical Biology</i> , 2009 , 5, 131-4	11.7	313
124	Functional rescue of beta-adrenoceptor dimerization and trafficking by pharmacological chaperones. <i>Traffic</i> , 2009 , 10, 1019-33	5.7	62
123	Regulation of AGS3 and Gialpha1 interaction in living cells. FASEB Journal, 2009, 23, 584.4	0.9	
122	Interaction of AGS4 and Gialpha1 in living cells. FASEB Journal, 2009, 23, 584.7	0.9	
121	Insights into signaling from the beta2-adrenergic receptor structure. <i>Nature Chemical Biology</i> , 2008 , 4, 397-403	11.7	87
120	Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. <i>Biophysical Journal</i> , 2008 , 94, 1001-9	2.9	66
119	Conformational rearrangements and signaling cascades involved in ligand-biased mitogen-activated protein kinase signaling through the beta1-adrenergic receptor. <i>Molecular Pharmacology</i> , 2008 , 74, 162-72	4.3	90
118	Cholesterol-dependent separation of the beta2-adrenergic receptor from its partners determines signaling efficacy: insight into nanoscale organization of signal transduction. <i>Journal of Biological Chemistry</i> , 2008 , 283, 24659-72	5.4	105
117	Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing delta-opioid receptors and heterotrimeric G proteins. <i>Journal of Biological Chemistry</i> , 2008 , 283, 15078-88	5.4	91
116	Distinct motifs of neuropeptide Y receptors differentially regulate trafficking and desensitization. <i>Traffic</i> , 2008 , 9, 305-24	5.7	28
115	Calcitonin gene-related peptide analogues with aza and indolizidinone amino acid residues reveal conformational requirements for antagonist activity at the human calcitonin gene-related peptide 1 receptor. <i>Journal of Medicinal Chemistry</i> , 2007 , 50, 1401-8	8.3	26
114	When an inhibitor promotes activity. <i>Chemistry and Biology</i> , 2007 , 14, 241-2		4
113	BRET analysis of GPCR oligomerization: newer does not mean better. <i>Nature Methods</i> , 2007 , 4, 3-4; author reply 4	21.6	112
112	The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. <i>Cellular Signalling</i> , 2007 , 19, 32-41	4.9	61
111	Unraveling G protein-coupled receptor endocytosis pathways using real-time monitoring of agonist-promoted interaction between beta-arrestins and AP-2. <i>Journal of Biological Chemistry</i> , 2007 , 282, 29089-100	5.4	59
110	International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. <i>Pharmacological Reviews</i> 2007 59 5-13	22.5	255

109	Src-dependent phosphorylation of beta2-adaptin dissociates the beta-arrestin-AP-2 complex. <i>Journal of Cell Science</i> , 2007 , 120, 1723-32	5.3	37
108	Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. <i>Journal of Biological Chemistry</i> , 2007 , 282, 31610-20	5.4	68
107	The evasive nature of drug efficacy: implications for drug discovery. <i>Trends in Pharmacological Sciences</i> , 2007 , 28, 423-30	13.2	295
106	Resonance energy transfer approaches in molecular pharmacology and beyond. <i>Trends in Pharmacological Sciences</i> , 2007 , 28, 362-5	13.2	123
105	Assembly and signaling of CRLR and RAMP1 complexes assessed by BRET. <i>Biochemistry</i> , 2007 , 46, 7022-	-332	36
104	Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. <i>Molecular Pharmacology</i> , 2006 , 70, 1575-84	4.3	254
103	Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. <i>Journal of Cell Science</i> , 2006 , 119, 2807-18	5.3	120
102	Simultaneous activation of the delta opioid receptor (deltaOR)/sensory neuron-specific receptor-4 (SNSR-4) hetero-oligomer by the mixed bivalent agonist bovine adrenal medulla peptide 22 activates SNSR-4 but inhibits deltaOR signaling. <i>Molecular Pharmacology</i> , 2006 , 70, 686-96	4.3	60
101	Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. Journal of the American Society of Nephrology: JASN, 2006 , 17, 232-43	12.7	187
100	Distinct subcellular localization for constitutive and agonist-modulated palmitoylation of the human delta opioid receptor. <i>Journal of Biological Chemistry</i> , 2006 , 281, 15780-9	5.4	63
99	Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET). <i>Current Protocols in Neuroscience</i> , 2006 , Chapter 5, Unit 5.23	2.7	71
98	An aplysia dopamine1-like receptor: molecular and functional characterization. <i>Journal of Neurochemistry</i> , 2006 , 96, 414-27	6	23
97	Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. <i>Nature Structural and Molecular Biology</i> , 2006 , 13, 778-86	17.6	336
96	Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy. <i>EMBO Journal</i> , 2006 , 25, 2698-709	13	41
95	Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. <i>Trends in Pharmacological Sciences</i> , 2005 , 26, 131-7	13.2	390
94	Subcellular distribution of GABA(B) receptor homo- and hetero-dimers. <i>Biochemical Journal</i> , 2005 , 388, 47-55	3.8	41
93	Real-time monitoring of receptor and G-protein interactions in living cells. <i>Nature Methods</i> , 2005 , 2, 177	'-84 6	325
92	Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. <i>EMBO Journal</i> , 2005 , 24, 1954-64	13	242

91	Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. <i>EMBO Reports</i> , 2005 , 6, 334-40	6.5	144
90	Methods to monitor the quaternary structure of G protein-coupled receptors. <i>FEBS Journal</i> , 2005 , 272, 2914-25	5.7	189
89	A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer. <i>Journal of Virological Methods</i> , 2005 , 128, 93-103	2.6	35
88	Heterodimerization of beta1- and beta2-adrenergic receptor subtypes optimizes beta-adrenergic modulation of cardiac contractility. <i>Circulation Research</i> , 2005 , 97, 244-51	15.7	92
87	High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. <i>Journal of Biomolecular Screening</i> , 2005 , 10, 463-75		167
86	Reciprocal regulation of agonist and inverse agonist signaling efficacy upon short-term treatment of the human delta-opioid receptor with an inverse agonist. <i>Molecular Pharmacology</i> , 2005 , 67, 336-48	4.3	16
85	Homo- and hetero-oligomerization of beta-arrestins in living cells. <i>Journal of Biological Chemistry</i> , 2005 , 280, 40210-5	5.4	76
84	Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. <i>Journal of Biological Chemistry</i> , 2005 , 280, 9895-903	5.4	200
83	Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. <i>Molecular Endocrinology</i> , 2004 , 18, 2074-84		127
82	Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with beta-arrestin and their trafficking patterns. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1548-53	11.5	127
81	Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties. <i>Journal of Biological Chemistry</i> , 2004 , 279, 28756-65	5.4	124
80	Molecular and cellular physiology of apolipoprotein A-I lipidation by the ATP-binding cassette transporter A1 (ABCA1). <i>Journal of Biological Chemistry</i> , 2004 , 279, 7384-94	5.4	80
79	A cyclic peptide mimicking the third intracellular loop of the V2 vasopressin receptor inhibits signaling through its interaction with receptor dimer and G protein. <i>Journal of Biological Chemistry</i> , 2004 , 279, 50904-14	5.4	27
78	Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. Journal of Biological Chemistry, 2004 , 279, 33390-7	5.4	243
77	Characterization of oligomeric human ATP binding cassette transporter A1. Potential implications for determining the structure of nascent high density lipoprotein particles. <i>Journal of Biological Chemistry</i> , 2004 , 279, 41529-36	5.4	58
76	Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. <i>Nature Cell Biology</i> , 2004 , 6, 52-8	23.4	148
75	Real-time monitoring of ubiquitination in living cells by BRET. <i>Nature Methods</i> , 2004 , 1, 203-8	21.6	128
74	Receptor activity-independent recruitment of betaarrestin2 reveals specific signalling modes. <i>EMBO Journal</i> , 2004 , 23, 3950-61	13	98

73	Roles of G-protein-coupled receptor dimerization. <i>EMBO Reports</i> , 2004 , 5, 30-4	6.5	534
72	Determination of protein-bound palmitate turnover rates using a three-compartment model that formally incorporates [3H]palmitate recycling. <i>Biochemistry</i> , 2004 , 43, 12275-88	3.2	11
71	Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. <i>Journal of Neurochemistry</i> , 2004 , 88, 726-34	6	123
70	Pharmacological chaperone action on G-protein-coupled receptors. <i>Current Opinion in Pharmacology</i> , 2004 , 4, 528-33	5.1	114
69	The gene product of the gp78/AMFR ubiquitin E3 ligase cDNA is selectively recognized by the 3F3A antibody within a subdomain of the endoplasmic reticulum. <i>Biochemical and Biophysical Research Communications</i> , 2004 , 320, 1316-22	3.4	19
68	Pharmacological chaperones: potential treatment for conformational diseases. <i>Trends in Endocrinology and Metabolism</i> , 2004 , 15, 222-8	8.8	223
67	Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. <i>Parkinsonism and Related Disorders</i> , 2004 , 10, 265-71	3.6	122
66	Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 11406-11	11.5	436
65	Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. <i>Molecular Endocrinology</i> , 2003 , 17, 677-91		272
64	Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function 2003 , 97, 1-	33	201
63	Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function 2003 , 97, 1-2005. Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. <i>EMBO Journal</i> , 2003 , 22, 3816-24	13	201
	Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. EMBO Journal, 2003,		
63	Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. <i>EMBO Journal</i> , 2003 , 22, 3816-24 Expression, regulation, and activity of ABCA1 in human cell lines. <i>Molecular Genetics and</i>	13	107
63	Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. <i>EMBO Journal</i> , 2003 , 22, 3816-24 Expression, regulation, and activity of ABCA1 in human cell lines. <i>Molecular Genetics and Metabolism</i> , 2003 , 78, 265-74 Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. <i>Journal of Biological Chemistry</i> ,	13 3·7	107
63 62 61	Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. <i>EMBO Journal</i> , 2003 , 22, 3816-24 Expression, regulation, and activity of ABCA1 in human cell lines. <i>Molecular Genetics and Metabolism</i> , 2003 , 78, 265-74 Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. <i>Journal of Biological Chemistry</i> , 2003 , 278, 46741-9 Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells.	3.7 5.4	10734353
63 62 61	Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. <i>EMBO Journal</i> , 2003 , 22, 3816-24 Expression, regulation, and activity of ABCA1 in human cell lines. <i>Molecular Genetics and Metabolism</i> , 2003 , 78, 265-74 Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. <i>Journal of Biological Chemistry</i> , 2003 , 278, 46741-9 Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells. <i>Journal of Biological Chemistry</i> , 2003 , 278, 22367-73 Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances beta-arrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. <i>Journal of Biological Chemistry</i> ,	3·7 5·4 5·4	1073435344
6362616059	Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. <i>EMBO Journal</i> , 2003 , 22, 3816-24 Expression, regulation, and activity of ABCA1 in human cell lines. <i>Molecular Genetics and Metabolism</i> , 2003 , 78, 265-74 Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. <i>Journal of Biological Chemistry</i> , 2003 , 278, 46741-9 Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells. <i>Journal of Biological Chemistry</i> , 2003 , 278, 22367-73 Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances beta-arrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. <i>Journal of Biological Chemistry</i> , 2003 , 278, 41541-51 Biochemical characterization of beta2-adrenergic receptor dimers and oligomers. <i>Biological</i>	 13 3.7 5.4 5.4 5.4 	107343534470

55	Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. <i>Journal of Biological Chemistry</i> , 2002 , 277, 21522-8	5.4	240
54	Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. <i>Journal of Biological Chemistry</i> , 2002 , 277, 44925-31	5.4	401
53	G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. <i>Journal of Biological Chemistry</i> , 2002 , 277, 46010-9	5.4	161
52	Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. <i>Journal of Biological Chemistry</i> , 2002 , 277, 34666-73	5.4	165
51	Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. <i>Journal of Biological Chemistry</i> , 2002 , 277, 35402-10	5.4	175
50	Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. <i>Annual Review of Pharmacology and Toxicology</i> , 2002 , 42, 409-35	17.9	511
49	The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS). <i>Journal of Receptor and Signal Transduction Research</i> , 2002 , 22, 533-41	2.6	97
48	The palmitoylation state of the beta(2)-adrenergic receptor regulates the synergistic action of cyclic AMP-dependent protein kinase and beta-adrenergic receptor kinase involved in its phosphorylation and desensitization. <i>Journal of Neurochemistry</i> , 2001 , 76, 269-79	6	44
47	Oligomerization of G-protein-coupled transmitter receptors. <i>Nature Reviews Neuroscience</i> , 2001 , 2, 274-	86 .5	581
46	Ca(2+)-dependent sensitization of adenylyl cyclase activity. <i>European Journal of Pharmacology</i> , 2001 , 422, 53-60	5.3	2
45	Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta-arrestin. <i>Journal of Biological Chemistry</i> , 2001 , 276, 42182-90	5.4	107
44	Protein-protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins. <i>Journal of Biological Chemistry</i> , 2001 , 276, 29575-81	5.4	93
43	Newly synthesized human delta opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. <i>Journal of Biological Chemistry</i> , 2001 , 276, 4416-23	5.4	176
42	Increased production of active human beta(2)-adrenergic/G(alphas) fusion receptor in Sf-9 cells using nutrient limiting conditions. <i>Protein Expression and Purification</i> , 2001 , 23, 66-74	2	6
41	Primary sequence requirements for S-acylation of beta(2)-adrenergic receptor peptides. <i>FEBS Letters</i> , 2001 , 499, 59-64	3.8	21
40	Association of calnexin with wild type and mutant AVPR2 that causes nephrogenic diabetes insipidus. <i>Biochemistry</i> , 2001 , 40, 6766-75	3.2	102
39	Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. <i>Journal of Biological Chemistry</i> , 2000 , 275, 13727	^{,5} 36	242
38	Pharmacological chaperones: a new twist on receptor folding. <i>Trends in Pharmacological Sciences</i> , 2000 , 21, 466-9	13.2	207

(1995-2000)

37	Functional significance of oligomerization of G-protein-coupled receptors. <i>Trends in Endocrinology and Metabolism</i> , 2000 , 11, 163-8	8.8	103
36	Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. <i>Journal of Clinical Investigation</i> , 2000 , 105, 887-95	15.9	412
35	Beta(2)-adrenergic receptor down-regulation. Evidence for a pathway that does not require endocytosis. <i>Journal of Biological Chemistry</i> , 1999 , 274, 28900-8	5.4	76
34	Activation of the beta(2)-adrenergic receptor-Galpha(s) complex leads to rapid depalmitoylation and inhibition of repalmitoylation of both the receptor and Galpha(s). <i>Journal of Biological Chemistry</i> , 1999 , 274, 31014-9	5.4	55
33	Nitric oxide modulates beta(2)-adrenergic receptor palmitoylation and signaling. <i>Journal of Biological Chemistry</i> , 1999 , 274, 26337-43	5.4	74
32	Comparative binding study of rat natriuretic peptide receptor-A. <i>Molecular and Cellular Biochemistry</i> , 1999 , 194, 23-30	4.2	6
31	Subtype-specific regulation of the beta-adrenergic receptors. <i>Advances in Pharmacology</i> , 1998 , 42, 433	-8 5.7	4
30	Propranolol therapy for ectopic beta-adrenergic receptors in adrenal Cushing@syndrome. <i>New England Journal of Medicine</i> , 1997 , 337, 1429-34	59.2	173
29	Influence of receptor density on the patterns of beta2-adrenocepter desensitization. <i>European Journal of Pharmacology</i> , 1997 , 326, 75-84	5.3	9
28	Upregulation of alpha1A- and alpha1B-adrenergic receptor mRNAs in the heart of cardiomyopathic hamsters. <i>Journal of Molecular and Cellular Cardiology</i> , 1997 , 29, 111-9	5.8	10
27	Recovery of homogeneous and functional beta 2-adrenergic receptors from extracellular baculovirus particles. <i>Nature Biotechnology</i> , 1997 , 15, 1300-4	44.5	7 ²
26	Palmitoylated cysteine 341 modulates phosphorylation of the beta2-adrenergic receptor by the cAMP-dependent protein kinase. <i>Journal of Biological Chemistry</i> , 1996 , 271, 21490-7	5.4	93
25	Agonist stimulation increases the turnover rate of beta 2AR-bound palmitate and promotes receptor depalmitoylation. <i>Biochemistry</i> , 1996 , 35, 15923-32	3.2	80
24	Bradykinin decreases T-kininogen synthesis in a rat hepatoma cell line: evidence of bradykinin B2-type receptors. <i>Peptides</i> , 1996 , 17, 1171-6	3.8	3
23	[19] Crosstalk between tyrosine kinase and G-protein-linked signal transduction systems. <i>Methods in Neurosciences</i> , 1996 , 29, 280-297		
22	beta-Adrenoceptors and dexamethasone synergistically stimulate the expression of the angiotensinogen gene in opossum kidney cells. <i>Kidney International</i> , 1996 , 50, 94-101	9.9	10
21	A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. <i>Journal of Biological Chemistry</i> , 1996 , 271, 16384-92	5.4	594
20	Functional effects of long-term activation on human beta 2- and beta 3-adrenoceptor signalling. <i>British Journal of Pharmacology</i> , 1995 , 114, 1045-51	8.6	25

19	Dynamic palmitoylation of G-protein-coupled receptors in eukaryotic cells. <i>Methods in Enzymology</i> , 1995 , 250, 300-14	1.7	26
18	Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. <i>European Journal of Pharmacology</i> , 1994 , 267, 7-19		160
17	Effects of trandolapril on the sympathetic tone and reactivity in systemic hypertension. <i>American Journal of Cardiology</i> , 1994 , 73, 18C-25C	3	11
16	Mutation of tyrosine-350 impairs the coupling of the beta 2-adrenergic receptor to the stimulatory guanine nucleotide binding protein without interfering with receptor down-regulation. <i>Biochemistry</i> , 1993 , 32, 4979-85	3.2	15
15	Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. <i>Biochemistry</i> , 1993 , 32, 11727-33	3.2	145
14	Chapter 3 Receptor regulation. <i>New Comprehensive Biochemistry</i> , 1993 , 24, 99-109		
13	Phorbol-ester-induced phosphorylation of the beta 2-adrenergic receptor decreases its coupling to Gs. <i>FEBS Letters</i> , 1991 , 279, 243-8	3.8	47
12	Cross-talk between second messengers. <i>Annals of the New York Academy of Sciences</i> , 1990 , 594, 120-9	6.5	38
11	Enhanced sympathoadrenal reactivity to haemorrhagic stress in DOCA-salt hypertensive rats. Journal of Hypertension, 1989 , 7, 237-42	1.9	8
10	Removal of phosphorylation sites from the beta 2-adrenergic receptor delays onset of agonist-promoted desensitization. <i>Nature</i> , 1988 , 333, 370-3	50.4	413
9	Regulation of adenylyl cyclase-coupled beta-adrenergic receptors. <i>Annual Review of Cell Biology</i> , 1988 , 4, 405-28		344
9		50.4	344 502
	1988, 4, 405-28 Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate	50.4	
8	1988, 4, 405-28 Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. <i>Nature</i> , 1987, 327, 67-70 Increased sympatho-adrenal tone and adrenal medulla reactivity in DOCA-salt hypertensive rats.		502
8	Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. <i>Nature</i> , 1987 , 327, 67-70 Increased sympatho-adrenal tone and adrenal medulla reactivity in DOCA-salt hypertensive rats. <i>Journal of Hypertension</i> , 1986 , 4, 157-63 Effects of acute and chronic administration of sotalol on the blood pressure and the sympathoadrenal activity of anesthetized deoxycorticosterone acetate-salt hypertensive rats.	1.9	502
876	Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. <i>Nature</i> , 1987 , 327, 67-70 Increased sympatho-adrenal tone and adrenal medulla reactivity in DOCA-salt hypertensive rats. <i>Journal of Hypertension</i> , 1986 , 4, 157-63 Effects of acute and chronic administration of sotalol on the blood pressure and the sympathoadrenal activity of anesthetized deoxycorticosterone acetate-salt hypertensive rats. <i>Canadian Journal of Physiology and Pharmacology</i> , 1986 , 64, 1164-9 Increased basal and reactive plasma norepinephrine and epinephrine levels in awake DOCA-salt	1.9	502 14
8765	Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. <i>Nature</i> , 1987 , 327, 67-70 Increased sympatho-adrenal tone and adrenal medulla reactivity in DOCA-salt hypertensive rats. <i>Journal of Hypertension</i> , 1986 , 4, 157-63 Effects of acute and chronic administration of sotalol on the blood pressure and the sympathoadrenal activity of anesthetized deoxycorticosterone acetate-salt hypertensive rats. <i>Canadian Journal of Physiology and Pharmacology</i> , 1986 , 64, 1164-9 Increased basal and reactive plasma norepinephrine and epinephrine levels in awake DOCA-salt hypertensive rats. <i>Journal of the Autonomic Nervous System</i> , 1986 , 15, 191-5 Selective activation of the adrenal medulla during acute bilateral carotid occlusion and its modulation by alpha-adrenergic receptors in the rat. <i>Canadian Journal of Physiology and</i>	2.4	502 14 6

GPCR-G protein selectivity has unified meta-analysis

3