Michel Bouvier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3665563/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Peptide Derived from a β2-Adrenergic Receptor Transmembrane Domain Inhibits Both Receptor Dimerization and Activation. Journal of Biological Chemistry, 1996, 271, 16384-16392.	1.6	673
2	Oligomerization of G-protein-coupled transmitter receptors. Nature Reviews Neuroscience, 2001, 2, 274-286.	4.9	620
3	Roles of Gâ€proteinâ€coupled receptor dimerization. EMBO Reports, 2004, 5, 30-34.	2.0	603
4	DIMERIZATION: An Emerging Concept for G Protein–Coupled Receptor Ontogeny and Function. Annual Review of Pharmacology and Toxicology, 2002, 42, 409-435.	4.2	553
5	Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature, 1987, 327, 67-70.	13.7	538
6	Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. Journal of Clinical Investigation, 2000, 105, 887-895.	3.9	502
7	Â-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11406-11411.	3.3	482
8	GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell, 2016, 166, 907-919.	13.5	443
9	Removal of phosphorylation sites from the β2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature, 1988, 333, 370-373.	13.7	439
10	Quantitative Assessment of β1- and β2-Adrenergic Receptor Homo- and Heterodimerization by Bioluminescence Resonance Energy Transfer. Journal of Biological Chemistry, 2002, 277, 44925-44931.	1.6	434
11	Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends in Pharmacological Sciences, 2005, 26, 131-137.	4.0	428
12	Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization. Journal of Biological Chemistry, 2003, 278, 46741-46749.	1.6	401
13	Probing the activation-promoted structural rearrangements in preassembled receptor–G protein complexes. Nature Structural and Molecular Biology, 2006, 13, 778-786.	3.6	390
14	Regulation of Adenylyl Cyclase-Coupled beta-Adrenergic Receptors. Annual Review of Cell Biology, 1988, 4, 405-428.	26.0	371
15	Real-time monitoring of receptor and G-protein interactions in living cells. Nature Methods, 2005, 2, 177-184.	9.0	369
16	Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-134.	3.9	349
17	The evasive nature of drug efficacy: implications for drug discovery. Trends in Pharmacological Sciences, 2007, 28, 423-430.	4.0	324
18	Oxytocin and Vasopressin V1a and V2 Receptors Form Constitutive Homo- and Heterodimers during Biosynthesis. Molecular Endocrinology, 2003, 17, 677-691.	3.7	296

#	Article	IF	CITATIONS
19	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	5.8	282
20	Distinct Signaling Profiles of β1 and β2 Adrenergic Receptor Ligands toward Adenylyl Cyclase and Mitogen-Activated Protein Kinase Reveals the Pluridimensionality of Efficacy. Molecular Pharmacology, 2006, 70, 1575-1584.	1.0	281
21	Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2562-2567.	3.3	281
22	Monitoring of Ligand-independent Dimerization and Ligand-induced Conformational Changes of Melatonin Receptors in Living Cells by Bioluminescence Resonance Energy Transfer. Journal of Biological Chemistry, 2002, 277, 21522-21528.	1.6	277
23	International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the Recognition and Nomenclature of G Protein-Coupled Receptor Heteromultimers. Pharmacological Reviews, 2007, 59, 5-13.	7.1	274
24	Export from the Endoplasmic Reticulum Represents the Limiting Step in the Maturation and Cell Surface Expression of the Human δOpioid Receptor. Journal of Biological Chemistry, 2000, 275, 13727-13736.	1.6	273
25	Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO Journal, 2005, 24, 1954-1964.	3.5	266
26	Homodimerization of the β2-Adrenergic Receptor as a Prerequisite for Cell Surface Targeting. Journal of Biological Chemistry, 2004, 279, 33390-33397.	1.6	262
27	Pharmacological chaperones: potential treatment for conformational diseases. Trends in Endocrinology and Metabolism, 2004, 15, 222-228.	3.1	252
28	Restructuring G-Protein- Coupled Receptor Activation. Cell, 2012, 151, 14-23.	13.5	247
29	Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature, 2016, 536, 484-487.	13.7	245
30	Ligands act as pharmacological chaperones and increase the efficiency of delta opioid receptor maturation. EMBO Journal, 2002, 21, 1628-1637.	3.5	241
31	Site-specific Phosphorylation of CXCR4 Is Dynamically Regulated by Multiple Kinases and Results in Differential Modulation of CXCR4 Signaling. Journal of Biological Chemistry, 2010, 285, 7805-7817.	1.6	233
32	Pharmacological chaperones: a new twist on receptor folding. Trends in Pharmacological Sciences, 2000, 21, 466-469.	4.0	232
33	Bioluminescence Resonance Energy Transfer Reveals Ligand-induced Conformational Changes in CXCR4 Homo- and Heterodimers. Journal of Biological Chemistry, 2005, 280, 9895-9903.	1.6	231
34	Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. , 2003, 97, 1-33.		228
35	Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nature Communications, 2016, 7, 12178.	5.8	219
36	Pharmacologic Chaperones as a Potential Treatment for X-Linked Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN, 2006, 17, 232-243.	3.0	218

#	Article	IF	CITATIONS
37	Quantification of Ligand Bias for Clinically Relevant <i>β</i> ₂ -Adrenergic Receptor Ligands: Implications for Drug Taxonomy. Molecular Pharmacology, 2014, 85, 492-509.	1.0	207
38	Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS Journal, 2005, 272, 2914-2925.	2.2	203
39	Propranolol Therapy for Ectopic β-Adrenergic Receptors in Adrenal Cushing's Syndrome. New England Journal of Medicine, 1997, 337, 1429-1434.	13.9	199
40	Newly Synthesized Human δOpioid Receptors Retained in the Endoplasmic Reticulum Are Retrotranslocated to the Cytosol, Deglycosylated, Ubiquitinated, and Degraded by the Proteasome. Journal of Biological Chemistry, 2001, 276, 4416-4423.	1.6	195
41	β1 β2-Adrenergic Receptor Heterodimerization Regulates β2-Adrenergic Receptor Internalization and ERK Signaling Efficacy. Journal of Biological Chemistry, 2002, 277, 35402-35410.	1.6	193
42	Constitutive Agonist-independent CCR5 Oligomerization and Antibody-mediated Clustering Occurring at Physiological Levels of Receptors. Journal of Biological Chemistry, 2002, 277, 34666-34673.	1.6	183
43	G Protein-coupled Receptors Form Stable Complexes with Inwardly Rectifying Potassium Channels and Adenylyl Cyclase. Journal of Biological Chemistry, 2002, 277, 46010-46019.	1.6	181
44	High-Throughput Screening of G Protein-Coupled Receptor Antagonists Using a Bioluminescence Resonance Energy Transfer 1-Based β-Arrestin2 Recruitment Assay. Journal of Biomolecular Screening, 2005, 10, 463-475.	2.6	181
45	Manifold roles of \hat{I}^2 -arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Science Signaling, 2018, 11, .	1.6	169
46	Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. European Journal of Pharmacology, 1994, 267, 7-19.	2.7	167
47	Monitoring agonistâ€promoted conformational changes of βâ€arrestin in living cells by intramolecular BRET. EMBO Reports, 2005, 6, 334-340.	2.0	160
48	Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nature Chemical Biology, 2018, 14, 1059-1066.	3.9	155
49	Human serotonin1B receptor expression in Sf9 cells: Phosphorylation, palmitoylation, and adenylyl cyclase inhibition. Biochemistry, 1993, 32, 11727-11733.	1.2	154
50	Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nature Cell Biology, 2004, 6, 52-58.	4.6	152
51	Functional Selective Oxytocin-derived Agonists Discriminate between Individual G Protein Family Subtypes. Journal of Biological Chemistry, 2012, 287, 3617-3629.	1.6	147
52	Functional Rescue of the Constitutively Internalized V2 Vasopressin Receptor Mutant R137H by the Pharmacological Chaperone Action of SR49059. Molecular Endocrinology, 2004, 18, 2074-2084.	3.7	146
53	Real-time monitoring of ubiquitination in living cells by BRET. Nature Methods, 2004, 1, 203-208.	9.0	143
54	Resonance energy transfer approaches in molecular pharmacology and beyond. Trends in Pharmacological Sciences, 2007, 28, 362-365.	4.0	142

#	Article	IF	CITATIONS
55	Neutrophil Elastase Acts as a Biased Agonist for Proteinase-activated Receptor-2 (PAR2). Journal of Biological Chemistry, 2011, 286, 24638-24648.	1.6	142
56	Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with Â-arrestin and their trafficking patterns. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1548-1553.	3.3	141
57	Differential β-Arrestin–Dependent Conformational Signaling and Cellular Responses Revealed by Angiotensin Analogs. Science Signaling, 2012, 5, ra33.	1.6	140
58	Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nature Chemical Biology, 2013, 9, 428-436.	3.9	140
59	Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. Journal of Neurochemistry, 2003, 88, 726-734.	2.1	139
60	Hetero-oligomerization between β2- and β3-Adrenergic Receptors Generates a β-Adrenergic Signaling Unit with Distinct Functional Properties. Journal of Biological Chemistry, 2004, 279, 28756-28765.	1.6	139
61	Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. Journal of Cell Science, 2006, 119, 2807-2818.	1.2	134
62	Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E5088-97.	3.3	133
63	Adenosine A2A-dopamine D2 receptor–receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism and Related Disorders, 2004, 10, 265-271.	1.1	132
64	Pharmacological chaperone action on G-protein-coupled receptors. Current Opinion in Pharmacology, 2004, 4, 528-533.	1.7	126
65	BRET analysis of GPCR oligomerization: newer does not mean better. Nature Methods, 2007, 4, 3-4.	9.0	126
66	A Synthetic Biology Approach Reveals a CXCR4-G ₁₃ -Rho Signaling Axis Driving Transendothelial Migration of Metastatic Breast Cancer Cells. Science Signaling, 2011, 4, ra60.	1.6	126
67	Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Science Translational Medicine, 2017, 9, .	5.8	124
68	Agonist-promoted Internalization of a Ternary Complex between Calcitonin Receptor-like Receptor, Receptor Activity-modifying Protein 1 (RAMP1), and β-Arrestin. Journal of Biological Chemistry, 2001, 276, 42182-42190.	1.6	123
69	Cholesterol-dependent Separation of the β2-Adrenergic Receptor from Its Partners Determines Signaling Efficacy. Journal of Biological Chemistry, 2008, 283, 24659-24672.	1.6	118
70	Association of Calnexin with Wild Type and Mutant AVPR2 that Cause Nephrogenic Diabetes Insipidusâ€. Biochemistry, 2001, 40, 6766-6775.	1.2	114
71	THE BRET2/ARRESTIN ASSAY IN STABLE RECOMBINANT CELLS: A PLATFORM TO SCREEN FOR COMPOUNDS THAT INTERACT WITH G PROTEIN-COUPLED RECEPTORS (GPCRS)*. Journal of Receptor and Signal Transduction Research, 2002, 22, 533-541.	1.3	112
72	Phosphorylation-independent desensitization of GABAB receptor by GRK4. EMBO Journal, 2003, 22, 3816-3824.	3.5	111

#	Article	IF	CITATIONS
73	A new inhibitor of the \hat{l}^2 -arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nature Communications, 2017, 8, 15054.	5.8	111
74	Functional Significance of Oligomerization of G-protein-coupled Receptors. Trends in Endocrinology and Metabolism, 2000, 11, 163-168.	3.1	108
75	Receptor activity-independent recruitment of βarrestin2 reveals specific signalling modes. EMBO Journal, 2004, 23, 3950-3961.	3.5	108
76	Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Science Signaling, 2018, 11, .	1.6	106
77	Protein-Protein Interaction and Not Glycosylation Determines the Binding Selectivity of Heterodimers between the Calcitonin Receptor-like Receptor and the Receptor Activity-modifying Proteins. Journal of Biological Chemistry, 2001, 276, 29575-29581.	1.6	103
78	Palmitoylated Cysteine 341 Modulates Phosphorylation of the β2-Adrenergic Receptor by the cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1996, 271, 21490-21497.	1.6	102
79	A Pluridimensional View of Biased Agonism. Molecular Pharmacology, 2016, 90, 587-595.	1.0	102
80	Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. ELife, 2022, 11, .	2.8	101
81	Heterodimerization of β 1 - and β 2 -Adrenergic Receptor Subtypes Optimizes β-Adrenergic Modulation of Cardiac Contractility. Circulation Research, 2005, 97, 244-251.	2.0	100
82	Bioluminescence Resonance Energy Transfer Assays Reveal Ligand-specific Conformational Changes within Preformed Signaling Complexes Containing δ-Opioid Receptors and Heterotrimeric G Proteins. Journal of Biological Chemistry, 2008, 283, 15078-15088.	1.6	100
83	How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling. Cell, 2020, 183, 1813-1825.e18.	13.5	100
84	GPCR activation mechanisms across classes and macro/microscales. Nature Structural and Molecular Biology, 2021, 28, 879-888.	3.6	98
85	Conformational Rearrangements and Signaling Cascades Involved in Ligand-Biased Mitogen-Activated Protein Kinase Signaling through the β1-Adrenergic Receptor. Molecular Pharmacology, 2008, 74, 162-172.	1.0	96
86	Agonist-Biased Signaling via Proteinase Activated Receptor-2: Differential Activation of Calcium and Mitogen-Activated Protein Kinase Pathways. Molecular Pharmacology, 2009, 76, 791-801.	1.0	96
87	Functional Selectivity of Natural and Synthetic Prostaglandin EP ₄ Receptor Ligands. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 297-307.	1.3	96
88	Insights into signaling from the β2-adrenergic receptor structure. Nature Chemical Biology, 2008, 4, 397-403.	3.9	95
89	A Novel Biased Allosteric Compound Inhibitor of Parturition Selectively Impedes the Prostaglandin F2α-mediated Rho/ROCK Signaling Pathway. Journal of Biological Chemistry, 2010, 285, 25624-25636.	1.6	87
90	Impedance Responses Reveal β2-Adrenergic Receptor Signaling Pluridimensionality and Allow Classification of Ligands with Distinct Signaling Profiles. PLoS ONE, 2012, 7, e29420.	1.1	87

#	Article	IF	CITATIONS
91	Nitric Oxide Modulates \hat{I}^2 -Adrenergic Receptor Palmitoylation and Signaling. Journal of Biological Chemistry, 1999, 274, 26337-26343.	1.6	86
92	Agonist Stimulation Increases the Turnover Rate of β2AR-Bound Palmitate and Promotes Receptor Depalmitoylationâ€. Biochemistry, 1996, 35, 15923-15932.	1.2	84
93	Molecular and Cellular Physiology of Apolipoprotein A-I Lipidation by the ATP-binding Cassette Transporter A1 (ABCA1). Journal of Biological Chemistry, 2004, 279, 7384-7394.	1.6	84
94	Community guidelines for GPCR ligand bias: IUPHAR review 32. British Journal of Pharmacology, 2022, 179, 3651-3674.	2.7	84
95	β2-Adrenergic Receptor Down-regulation. Journal of Biological Chemistry, 1999, 274, 28900-28908.	1.6	83
96	Homo- and Hetero-oligomerization of β-Arrestins in Living Cells. Journal of Biological Chemistry, 2005, 280, 40210-40215.	1.6	83
97	Monitoring Proteinâ€Protein Interactions in Living Cells by Bioluminescence Resonance Energy Transfer (BRET). Current Protocols in Neuroscience, 2006, 34, Unit 5.23.	2.6	82
98	Ang-(1-7) is an endogenous β-arrestin-biased agonist of the AT1 receptor with protective action in cardiac hypertrophy. Scientific Reports, 2017, 7, 11903.	1.6	82
99	Multiplexing of Multicolor Bioluminescence Resonance Energy Transfer. Biophysical Journal, 2010, 99, 4037-4046.	0.2	81
100	Palmitoylation of the V2 Vasopressin Receptor Carboxyl Tail Enhances β-Arrestin Recruitment Leading to Efficient Receptor Endocytosis and ERK1/2 Activation. Journal of Biological Chemistry, 2003, 278, 41541-41551.	1.6	80
101	β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1. Journal of Biological Chemistry, 2015, 290, 21131-21140.	1.6	79
102	Bioluminescence resonance energy transfer–based imaging of protein–protein interactions in living cells. Nature Protocols, 2019, 14, 1084-1107.	5.5	79
103	Recovery of homogeneous and functional β2-adrenergic receptors from extracellular baculovirus particles. Nature Biotechnology, 1997, 15, 1300-1304.	9.4	77
104	Pharmacological Chaperones Restore Function to MC4R Mutants Responsible for Severe Early-Onset Obesity. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 520-532.	1.3	74
105	GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base. Bioinformatics, 2010, 26, 1804-1805.	1.8	74
106	Functional Calcitonin Gene-related Peptide Receptors Are Formed by the Asymmetric Assembly of a Calcitonin Receptor-like Receptor Homo-oligomer and a Monomer of Receptor Activity-modifying Protein-1. Journal of Biological Chemistry, 2007, 282, 31610-31620.	1.6	72
107	Functional Rescue of β ₁ â€Adrenoceptor Dimerization and Trafficking by Pharmacological Chaperones. Traffic, 2009, 10, 1019-1033.	1.3	71
108	Development and Characterization of Pepducins as Gs-biased Allosteric Agonists*. Journal of Biological Chemistry, 2014, 289, 35668-35684.	1.6	71

#	Article	IF	CITATIONS
109	Subcellular Imaging of Dynamic Protein Interactions by Bioluminescence Resonance Energy Transfer. Biophysical Journal, 2008, 94, 1001-1009.	0.2	69
110	The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. Cellular Signalling, 2007, 19, 32-41.	1.7	68
111	Unraveling G Protein-coupled Receptor Endocytosis Pathways Using Real-time Monitoring of Agonist-promoted Interaction between β-Arrestins and AP-2. Journal of Biological Chemistry, 2007, 282, 29089-29100.	1.6	67
112	Characterization of Oligomeric Human ATP Binding Cassette Transporter A1. Journal of Biological Chemistry, 2004, 279, 41529-41536.	1.6	66
113	Distinct Subcellular Localization for Constitutive and Agonist-modulated Palmitoylation of the Human δOpioid Receptor. Journal of Biological Chemistry, 2006, 281, 15780-15789.	1.6	66
114	Biased Signaling of the Mu Opioid Receptor Revealed in Native Neurons. IScience, 2019, 14, 47-57.	1.9	65
115	Simultaneous Activation of the δ Opioid Receptor (δOR)/Sensory Neuron-Specific Receptor-4 (SNSR-4) Hetero-Oligomer by the Mixed Bivalent Agonist Bovine Adrenal Medulla Peptide 22 Activates SNSR-4 but Inhibits δOR Signaling. Molecular Pharmacology, 2006, 70, 686-696.	1.0	64
116	Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Expert Opinion on Drug Discovery, 2011, 6, 811-825.	2.5	64
117	Biased Signaling Favoring Gi over β-Arrestin Promoted by an Apelin Fragment Lacking the C-terminal Phenylalanine. Journal of Biological Chemistry, 2014, 289, 24599-24610.	1.6	64
118	Systematic protein–protein interaction mapping for clinically relevant human <scp>GPCR</scp> s. Molecular Systems Biology, 2017, 13, 918.	3.2	63
119	Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity. Nature Communications, 2017, 8, 2169.	5.8	61
120	Biased agonism of clinically approved \hat{l} 4-opioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics. Neuropharmacology, 2020, 166, 107718.	2.0	61
121	Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. Cell Reports, 2021, 35, 109246.	2.9	61
122	Functional Characterization of Vasopressin Type 2 Receptor Substitutions (R137H/C/L) Leading to Nephrogenic Diabetes Insipidus and Nephrogenic Syndrome of Inappropriate Antidiuresis: Implications for Treatments. Molecular Pharmacology, 2010, 77, 836-845.	1.0	59
123	Common coupling map advances GPCR-G protein selectivity. ELife, 2022, 11, .	2.8	59
124	Activation of the β2-Adrenergic Receptor-Gαs Complex Leads to Rapid Depalmitoylation and Inhibition of Repalmitoylation of Both the Receptor and Gαs. Journal of Biological Chemistry, 1999, 274, 31014-31019.	1.6	57
125	CrossTalk proposal: Weighing the evidence for Class A GPCR dimers, the evidence favours dimers. Journal of Physiology, 2014, 592, 2439-2441.	1.3	57
126	Discovery of G Protein-Biased Dopaminergics with a Pyrazolo[1,5- <i>a</i>]pyridine Substructure. Journal of Medicinal Chemistry, 2017, 60, 2908-2929.	2.9	55

#	Article	lF	CITATIONS
127	Identification and Characterization of an Activating F229V Substitution in the V2 Vasopressin Receptor in an Infant with NSIAD. Journal of the American Society of Nephrology: JASN, 2012, 23, 1635-1640.	3.0	54
128	Purinergic Receptor Transactivation by the <i>l²</i> ₂ -Adrenergic Receptor Increases Intracellular Ca ²⁺ in Nonexcitable Cells. Molecular Pharmacology, 2017, 91, 533-544.	1.0	52
129	Chemogenetics defines receptor-mediated functions of short chain free fatty acids. Nature Chemical Biology, 2019, 15, 489-498.	3.9	52
130	Bioinactive ACTH Causing Glucocorticoid Deficiency. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 736-742.	1.8	51
131	<scp>CNIH4</scp> Interacts with Newly Synthesized <scp>GPCR</scp> and Controls Their Export from the Endoplasmic Reticulum. Traffic, 2014, 15, 383-400.	1.3	51
132	Phorbol-ester-induced phosphorylation of the β2-adrenergic receptor decreases its coupling to Gs. FEBS Letters, 1991, 279, 243-248.	1.3	50
133	The palmitoylation state of the β2-adrenergic receptor regulates the synergistic action of cyclic AMP-dependent protein kinase and β-adrenergic receptor kinase involved in its phosphorylation and desensitization. Journal of Neurochemistry, 2008, 76, 269-279.	2.1	50
134	An Evolutionarily Conserved Autoinhibitory Molecular Switch in ELMO Proteins Regulates Rac Signaling. Current Biology, 2010, 20, 2021-2027.	1.8	49
135	Vasopressin Type 2 Receptor V88M Mutation: Molecular Basis of Partial and Complete Nephrogenic Diabetes Insipidus. Nephron Physiology, 2010, 114, p1-p10.	1.5	49
136	Oligomerization of Transcriptional Intermediary Factor 1 Regulators and Interaction with ZNF74 Nuclear Matrix Protein Revealed by Bioluminescence Resonance Energy Transfer in Living Cells. Journal of Biological Chemistry, 2003, 278, 22367-22373.	1.6	48
137	Subcellular distribution of GABAB receptor homo- and hetero-dimers. Biochemical Journal, 2005, 388, 47-55.	1.7	47
138	The chemokine CXC4 and CC2 receptors form homo―and heterooligomers that can engage their signaling Gâ€protein effectors and l²arrestin. FASEB Journal, 2014, 28, 4509-4523.	0.2	47
139	Functional characterization of a novel serotonin receptor (5-HTap2) expressed in the CNS of Aplysia californica. Journal of Neurochemistry, 2002, 80, 335-345.	2.1	46
140	Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4524-4529.	3.3	46
141	FZD ₅ is a $G\hat{l}_{\pm}$ _q -coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Science Signaling, 2018, 11, .	1.6	46
142	Conformational Dynamics of Kir3.1/Kir3.2 Channel Activation Via <i>δ</i> -Opioid Receptors. Molecular Pharmacology, 2013, 83, 416-428.	1.0	45
143	Type 2 diabetes–associated variants of the MT ₂ melatonin receptor affect distinct modes of signaling. Science Signaling, 2018, 11, .	1.6	45
144	Regulation of the ACS3·Gαi Signaling Complex by a Seven-transmembrane Span Receptor*. Journal of Biological Chemistry, 2010, 285, 33949-33958.	1.6	44

#	Article	IF	CITATIONS
145	Contribution of Kv1.2 Voltage-gated Potassium Channel to D2 Autoreceptor Regulation of Axonal Dopamine Overflow. Journal of Biological Chemistry, 2011, 286, 9360-9372.	1.6	44
146	Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy. EMBO Journal, 2006, 25, 2698-2709.	3.5	43
147	Multimerization of Staufen1 in live cells. Rna, 2010, 16, 585-597.	1.6	43
148	The pocketome of G-protein-coupled receptors reveals previously untargeted allosteric sites. Nature Communications, 2022, 13, 2567.	5.8	43
149	Cross-Talk between Second Messengers. Annals of the New York Academy of Sciences, 1990, 594, 120-129.	1.8	42
150	Src-dependent phosphorylation of β2-adaptin dissociates the β-arrestin–AP-2 complex. Journal of Cell Science, 2007, 120, 1723-1732.	1.2	42
151	Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics, 2007, 8, 177.	1.2	42
152	Assembly and Signaling of CRLR and RAMP1 Complexes Assessed by BRETâ€. Biochemistry, 2007, 46, 7022-7033.	1.2	41
153	KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABA _B Receptor-Induced K ⁺ Currents. Journal of Neuroscience, 2017, 37, 1162-1175.	1.7	41
154	Biochemical Characterization of \hat{I}^2 2-Adrenergic Receptor Dimers and Oligomers. Biological Chemistry, 2003, 384, 117-23.	1.2	40
155	Spatiotemporal regulation of the GPCR activity of BAI3 by C1qL4 and Stabilin-2 controls myoblast fusion. Nature Communications, 2018, 9, 4470.	5.8	40
156	G protein–coupled receptor modulation with pepducins: moving closer to the clinic. Annals of the New York Academy of Sciences, 2011, 1226, 34-49.	1.8	39
157	Engagement of Î ² -arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1028-37.	3.3	39
158	Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5160-8.	3.3	39
159	Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13006-13015.	3.3	39
160	A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer. Journal of Virological Methods, 2005, 128, 93-103.	1.0	38
161	PKA regulatory subunits mediate synergy among conserved G-protein-coupled receptor cascades. Nature Communications, 2011, 2, 598.	5.8	38
162	Receptor-regulated Interaction of Activator of G-protein Signaling-4 and Gαi. Journal of Biological Chemistry, 2010, 285, 20588-20594.	1.6	37

#	Article	IF	CITATIONS
163	Translating biased signaling in the ghrelin receptor system into differential in vivo functions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10255-E10264.	3.3	37
164	Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple cellular mechanisms involved in weight regulation. Cell Reports, 2021, 34, 108862.	2.9	37
165	Expression, regulation, and activity of ABCA1 in human cell lines. Molecular Genetics and Metabolism, 2003, 78, 265-274.	0.5	36
166	Predicting phenotype from genotype: Improving accuracy through more robust experimental and computational modeling. Human Mutation, 2017, 38, 569-580.	1.1	36
167	Functional New World monkey oxytocin forms elicit an altered signaling profile and promotes parental care in rats. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9044-9049.	3.3	36
168	Agonist-induced formation of unproductive receptor-G ₁₂ complexes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21723-21730.	3.3	35
169	Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors. Trends in Biochemical Sciences, 2018, 43, 533-546.	3.7	34
170	Ligand bias prevents class equality among beta-blockers. Current Opinion in Pharmacology, 2014, 16, 50-57.	1.7	33
171	Dissecting the roles of GRK2 and GRK3 in μ-opioid receptor internalization and β-arrestin2 recruitment using CRISPR/Cas9-edited HEK293 cells. Scientific Reports, 2020, 10, 17395.	1.6	33
172	Mapping the Putative G Protein-coupled Receptor (GPCR) Docking Site on GPCR Kinase 2. Journal of Biological Chemistry, 2014, 289, 25262-25275.	1.6	32
173	Preservation of Post-Infarction Cardiac Structure and Function via Long-Term Oral Formyl Peptide Receptor AgonistÂTreatment. JACC Basic To Translational Science, 2019, 4, 905-920.	1.9	32
174	A Cyclic Peptide Mimicking the Third Intracellular Loop of the V2 Vasopressin Receptor Inhibits Signaling through Its Interaction with Receptor Dimer and G Protein. Journal of Biological Chemistry, 2004, 279, 50904-50914.	1.6	31
175	Distinct Motifs of Neuropeptide Y Receptors Differentially Regulate Trafficking and Desensitization. Traffic, 2008, 9, 305-324.	1.3	31
176	Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response. Nature Communications, 2019, 10, 4075.	5.8	31
177	Functional effects of longâ€term activation on human β ₂ ―and β ₃ â€adrenoceptor signalling. British Journal of Pharmacology, 1995, 114, 1045-1051.	2.7	30
178	Proteinâ€protein interactions monitored in cells from transgenic mice using bioluminescence resonance energy transfer. FASEB Journal, 2010, 24, 2829-2838.	0.2	30
179	Illuminating the complexity of GPCR pathway selectivity – advances in biosensor development. Current Opinion in Structural Biology, 2021, 69, 142-149.	2.6	30
180	[24] Dynamic palmitoylation of G-protein-coupled receptors in eukaryotic cells. Methods in Enzymology, 1995, 250, 300-314.	0.4	29

#	Article	IF	CITATIONS
181	Genetically encoded intrabody sensors report the interaction and trafficking of β-arrestin 1 upon activation of G-protein–coupled receptors. Journal of Biological Chemistry, 2020, 295, 10153-10167.	1.6	29
182	A Perspective on Studying G-Protein–Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms. Molecular Pharmacology, 2015, 88, 589-595.	1.0	28
183	Calcitonin Gene-Related Peptide Analogues with Aza and Indolizidinone Amino Acid Residues Reveal Conformational Requirements for Antagonist Activity at the Human Calcitonin Gene-Related Peptide 1 Receptor. Journal of Medicinal Chemistry, 2007, 50, 1401-1408.	2.9	27
184	Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing. Brain Structure and Function, 2018, 223, 1275-1296.	1.2	27
185	An aplysia dopamine1-like receptor: molecular and functional characterization. Journal of Neurochemistry, 2006, 96, 414-427.	2.1	26
186	Bioluminescence resonance energy transfer-based biosensors allow monitoring of ligand- and transducer-mediated GPCR conformational changes. Communications Biology, 2018, 1, 106.	2.0	26
187	Agonistâ€induced desensitisation of β ₃ â€adrenoceptors: Where, when, and how?. British Journal of Pharmacology, 2019, 176, 2539-2558.	2.7	26
188	Signal profiling of the β1AR reveals coupling to novel signalling pathways and distinct phenotypic responses mediated by β1AR and β2AR. Scientific Reports, 2020, 10, 8779.	1.6	26
189	Selective FPR2 Agonism Promotes a Proresolution Macrophage Phenotype and Improves Cardiac Structure-Function Post Myocardial Infarction. JACC Basic To Translational Science, 2021, 6, 676-689.	1.9	26
190	Primary sequence requirements forS-acylation of β2-adrenergic receptor peptides. FEBS Letters, 2001, 499, 59-64.	1.3	25
191	In Vitro and In Vivo Evaluation of a Small-Molecule APJ (Apelin Receptor) Agonist, BMS-986224, as a Potential Treatment for Heart Failure. Circulation: Heart Failure, 2021, 14, e007351.	1.6	23
192	Cryo-EM structure of constitutively active human Frizzled 7 in complex with heterotrimeric Gs. Cell Research, 2021, 31, 1311-1314.	5.7	23
193	The gene product of the gp78/AMFR ubiquitin E3 ligase cDNA is selectively recognized by the 3F3A antibody within a subdomain of the endoplasmic reticulum. Biochemical and Biophysical Research Communications, 2004, 320, 1316-1322.	1.0	22
194	Combining resonance energy transfer methods reveals a complex between the α _{2A} -adrenergic receptor, Gα _{i1} β ₁ γ ₂ , and GRK2. FASEB Journal, 2010, 24, 4733-4743.	0.2	22
195	A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells. Nature Communications, 2014, 5, 4431.	5.8	21
196	Comparative analyses of downstream signal transduction targets modulated after activation of the AT1 receptor by two β-arrestin-biased agonists. Frontiers in Pharmacology, 2015, 6, 131.	1.6	21
197	The PAR2 inhibitor I-287 selectively targets Gαq and Gα12/13 signaling and has anti-inflammatory effects. Communications Biology, 2020, 3, 719.	2.0	21
198	BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated G _q activation at early endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21

#	Article	IF	CITATIONS
199	Pharmacological Characterization of 5-Substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel Antagonists for the Histamine H3 and H4 Receptors with Anti-inflammatory Potential. Frontiers in Pharmacology, 2017, 8, 825.	1.6	20
200	Sensory Neuron-Specific Mas-Related Gene-X1 Receptors Resist Agonist-Promoted Endocytosis. Molecular Pharmacology, 2010, 78, 249-259.	1.0	19
201	Unraveling the structural basis of GPCR activation and inactivation. Nature Structural and Molecular Biology, 2013, 20, 539-541.	3.6	19
202	NF45 and NF90 Regulate Mitotic Gene Expression by Competing with Staufen-Mediated mRNA Decay. Cell Reports, 2020, 31, 107660.	2.9	19
203	Reciprocal Regulation of Agonist and Inverse Agonist Signaling Efficacy upon Short-Term Treatment of the Human l´-Opioid Receptor with an Inverse Agonist. Molecular Pharmacology, 2005, 67, 336-348.	1.0	18
204	Mutation of tyrosine-350 impairs the coupling of the .beta.2-adrenergic receptor to the stimulatory guanine nucleotide binding protein without interfering with receptor down-regulation. Biochemistry, 1993, 32, 4979-4985.	1.2	17
205	Cys-27 Variant of Human δ-Opioid Receptor Modulates Maturation and Cell Surface Delivery of Phe-27 Variant via Heteromerization. Journal of Biological Chemistry, 2012, 287, 5008-5020.	1.6	17
206	Post-endocytotic Deubiquitination and Degradation of the Metabotropic Î ³ -Aminobutyric Acid Receptor by the Ubiquitin-specific Protease 14. Journal of Biological Chemistry, 2016, 291, 7156-7170.	1.6	17
207	Barbadin selectively modulates FPR2-mediated neutrophil functions independent of receptor endocytosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118849.	1.9	17
208	Increased Sympatho-Adrenal Tone and Adrenal Medulla Reactivity in DOCA-Salt Hypertensive Rats. Journal of Hypertension, 1986, 4, 157-163.	0.3	16
209	Structural Insight into G Protein-Coupled Receptor Signaling Efficacy and Bias between Gs and β-Arrestin. ACS Pharmacology and Translational Science, 2019, 2, 148-154.	2.5	16
210	Proadrenomedullin N-Terminal 20 Peptides (PAMPs) Are Agonists of the Chemokine Scavenger Receptor ACKR3/CXCR7. ACS Pharmacology and Translational Science, 2021, 4, 813-823.	2.5	15
211	Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2653-E2662.	3.3	14
212	Discovery of Two Novel Antiplatelet Clinical Candidates (BMS-986120 and BMS-986141) That Antagonize Protease-Activated Receptor 4. Journal of Medicinal Chemistry, 2022, 65, 8843-8854.	2.9	14
213	Selective activation of the adrenal medulla during acute bilateral carotid occlusion and its modulation by α-adrenergic receptors in the rat. Canadian Journal of Physiology and Pharmacology, 1983, 61, 381-387.	0.7	13
214	β-Adrenoceptors and dexamethasone synergistically stimulate the expression of the angiotensinogen gene in opossum kidney cells. Kidney International, 1996, 50, 94-101.	2.6	13
215	Rebuttal from Michel Bouvier and Terence E. Hébert. Journal of Physiology, 2014, 592, 2447-2447.	1.3	13
216	The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis. Oncogene, 2021, 40, 2243-2257.	2.6	13

#	Article	IF	CITATIONS
217	Effects of trandolapril on the sympathetic tone and reactivity in systemic hypertension. American Journal of Cardiology, 1994, 73, C18-C25.	0.7	12
218	Upregulation ofα1A-andα1B-Adrenergic Receptor mRNAs in the Heart of Cardiomyopathic Hamsters. Journal of Molecular and Cellular Cardiology, 1997, 29, 111-119.	0.9	12
219	Determination of Protein-Bound Palmitate Turnover Rates Using a Three-Compartment Model That Formally Incorporates [3H]Palmitate Recycling. Biochemistry, 2004, 43, 12275-12288.	1.2	12
220	N-Glycan-dependent and -independent Quality Control of Human δ Opioid Receptor N-terminal Variants. Journal of Biological Chemistry, 2014, 289, 17830-17842.	1.6	12
221	Discovery of Potent Protease-Activated Receptor 4 Antagonists with in Vivo Antithrombotic Efficacy. Journal of Medicinal Chemistry, 2019, 62, 7400-7416.	2.9	12
222	Hybridization of β-Adrenergic Agonists and Antagonists Confers G Protein Bias. Journal of Medicinal Chemistry, 2019, 62, 5111-5131.	2.9	12
223	Increased basal and reactive plasma norepinephrine and epinephrine levels in awake DOCA-salt hypertensive rats. Journal of the Autonomic Nervous System, 1986, 15, 191-195.	1.9	11
224	Technology combination to address GPCR allosteric modulator drug-discovery pitfalls. Drug Discovery Today: Technologies, 2013, 10, e261-e267.	4.0	11
225	Feedback control of the Gpr161-Gαs-PKA axis contributes to basal Hedgehog repression in zebrafish. Development (Cambridge), 2021, 148, .	1.2	11
226	Enhanced sympathoadrenal reactivity to haemorrhagic stress in DOCA-salt hypertensive rats. Journal of Hypertension, 1989, 7, 237.	0.3	10
227	Influence of receptor density on the patterns of β2-adrenoceptor desensitization. European Journal of Pharmacology, 1997, 326, 75-84.	1.7	10
228	Constraining the Side Chain of C-Terminal Amino Acids in Apelin-13 Greatly Increases Affinity, Modulates Signaling, and Improves the Pharmacokinetic Profile. Journal of Medicinal Chemistry, 2021, 64, 5345-5364.	2.9	10
229	Interphase microtubule disassembly is a signaling cue that drives cell rounding at mitotic entry. Journal of Cell Biology, 2022, 221, .	2.3	10
230	Circadian, Sleep and Caloric Intake Phenotyping in Type 2 Diabetes Patients With Rare Melatonin Receptor 2 Mutations and Controls: A Pilot Study. Frontiers in Physiology, 2020, 11, 564140.	1.3	9
231	Structure–Activity Relationship and Bioactivity of Short Analogues of ELABELA as Agonists of the Apelin Receptor. Journal of Medicinal Chemistry, 2021, 64, 602-615.	2.9	9
232	Selective release of gastrointestinal hormones induced by an orally active GPR39 agonist. Molecular Metabolism, 2021, 49, 101207.	3.0	9
233	Effects of acute and chronic administration of sotalol on the blood pressure and the sympathoadrenal activity of anesthetized deoxycorticosterone acetate – salt hypertensive rats. Canadian Journal of Physiology and Pharmacology, 1986, 64, 1164-1169.	0.7	8
234	Comparative binding study of rat natriuretic peptide receptor-A. Molecular and Cellular Biochemistry, 1999, 194, 23-30.	1.4	7

#	Article	IF	CITATIONS
235	Cellular and subcellular context determine outputs from signaling biosensors. Methods in Cell Biology, 2016, 132, 319-337.	0.5	7
236	Signal Transduction Profiling of Angiotensin II Type 1 Receptor With Mutations Associated to Atrial Fibrillation in Humans. Frontiers in Pharmacology, 2020, 11, 600132.	1.6	7
237	Mechanistic insights into dopaminergic and serotonergic neurotransmission – concerted interactions with helices 5 and 6 drive the functional outcome. Chemical Science, 2021, 12, 10990-11003.	3.7	7
238	Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen. Nature Communications, 2021, 12, 4688.	5.8	7
239	Vasopressin and oxytocin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	7
240	New oral protease-activated receptor 4 antagonist BMS-986120: tolerability, pharmacokinetics, pharmacodynamics, and gene variant effects in humans. Platelets, 2022, 33, 969-978.	1.1	7
241	Increased Production of Active Human β2-Adrenergic/Gαs Fusion Receptor in Sf-9 Cells Using Nutrient Limiting Conditions. Protein Expression and Purification, 2001, 23, 66-74.	0.6	6
242	Development of conformational BRET biosensors that monitor ezrin, radixin and moesin activation in real time. Journal of Cell Science, 2021, 134, .	1.2	6
243	Bivalent ligands promote endosomal trafficking of the dopamine D3 receptor-neurotensin receptor 1 heterodimer. Communications Biology, 2021, 4, 1062.	2.0	6
244	Ackr3-Venus knock-in mouse lights up brain vasculature. Molecular Brain, 2021, 14, 151.	1.3	6
245	When an Inhibitor Promotes Activity. Chemistry and Biology, 2007, 14, 241-242.	6.2	5
246	Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. Cellular and Molecular Life Sciences, 2020, 77, 5259-5279.	2.4	5
247	Novel potent (dihydro)benzofuranyl piperazines as human histamine receptor ligands – Functional characterization and modeling studies on H3 and H4 receptors. Bioorganic and Medicinal Chemistry, 2021, 30, 115924.	1.4	5
248	Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity. JCI Insight, 2021, 6, .	2.3	5
249	Bradykinin Decreases T-Kininogen Synthesis in a Rat Hepatoma Cell Line: Evidence of Bradykinin B 2 -Type Receptors. Peptides, 1996, 17, 1171-1176.	1.2	4
250	Subtype-Specific Regulation of the β-Adrenergic Receptors. Advances in Pharmacology, 1997, 42, 433-438.	1.2	4
251	Older adults with heart failure treated with carvedilol, bisoprolol, or metoprolol tartrate: risk of mortality. Pharmacoepidemiology and Drug Safety, 2017, 26, 81-90.	0.9	4
252	Comprehensive Signaling Profiles Reveal Unsuspected Functional Selectivity of δOpioid Receptor Agonists and Allow the Identification of Ligands with the Greatest Potential for Inducing Cyclase Superactivation. ACS Pharmacology and Translational Science, 2021, 4, 1483-1498.	2.5	4

#	Article	IF	CITATIONS
253	Angiotensin II Type 1 Receptor Tachyphylaxis Is Defined by Agonist Residence Time. Hypertension, 2022, 79, 115-125.	1.3	4
254	Novel Screening Paradigms for the Identification of Allosteric Modulators and/or Biased Ligands for Challenging G-Protein-Coupled Receptors. Annual Reports in Medicinal Chemistry, 2014, 49, 285-300.	0.5	3
255	Ca2+-dependent sensitization of adenylyl cyclase activity. European Journal of Pharmacology, 2001, 422, 53-60.	1.7	2
256	Bioluminescence Resonance Energy Transfer (BRET) Imaging in Living Cells: Image Acquisition and Quantification. Methods in Molecular Biology, 2021, 2274, 305-314.	0.4	2
257	Use of Novel ebBRET Biosensors for Comprehensive Signaling Profiling of One Hundred Therapeutically Relevant Human GPCRs. FASEB Journal, 2021, 35, .	0.2	2
258	Transcriptome Analysis Reveals That G Protein-Coupled Receptors Are Potential Diagnostic Markers or Therapeutic Targets in Acute Myeloid Leukemia. Blood, 2015, 126, 3855-3855.	0.6	2
259	Combining resonance energy transfer methods reveals a complex between the α2Aâ€adrenergic receptor, Gαi1β1γ2, and GRK2. FASEB Journal, 2010, 24, 4733-4743.	0.2	2
260	<i>médecine/sciences</i> 2011. Medecine/Sciences, 2011, 27, 3-4.	0.0	2
261	Structural Elements Directing G Proteins and β-Arrestin Interactions with the Human Melatonin Type 2 Receptor Revealed by Natural Variants. ACS Pharmacology and Translational Science, 2022, 5, 89-101.	2.5	2
262	RECEPTORâ€REGULATED INTERACTION OF ACTIVATOR OF Gâ€PROTEIN SIGNALING 4 AND GIALPHA. FASEB Journa 2010, 24, 587.8.	al. 0.2	1
263	Chapter 3 Receptor regulation. New Comprehensive Biochemistry, 1993, 24, 99-109.	0.1	Ο
264	[19] Crosstalk between tyrosine kinase and G-protein-linked signal transduction systems. Methods in Neurosciences, 1996, 29, 280-297.	0.5	0
265	Cardiomyocytes β-adrenergic receptors are resistants to short-term desensitization. Journal of Molecular and Cellular Cardiology, 2001, 33, A15.	0.9	0
266	TAK-875 is a Partial Agonist of the Free Fatty Acid Receptor GPR40. Canadian Journal of Diabetes, 2013, 37, S59.	0.4	0
267	Regulation of AGS3 and Gialpha1 interaction in living cells. FASEB Journal, 2009, 23, 584.4.	0.2	0
268	Interaction of AGS4 and Gialpha1 in living cells. FASEB Journal, 2009, 23, 584.7.	0.2	0
269	COUPLING OF A Gâ€PROTEIN COUPLED RECEPTOR TO THE AGS3â€Galphai SIGNALING COMPLEX. FASEB Journal, 2010, 24, 587.7.	0.2	0
270	Role of the GRK2 extreme amino terminus and active site tether in forming G protein oupled receptor docking site. FASEB Journal, 2013, 27, 1040.1.	0.2	0

#	ARTICLE	IF	CITATIONS
271	Probing the Functional Selectivity of \hat{l}^2 -adrenergic Receptors Reveals New Signaling Modes and Potential Therapeutic Applications. , 2014, , 112.		0
272	Identification of key regions mediating human melatonin type 1 receptor biased signaling revealed by natural variants. FASEB Journal, 2018, 32, 555.10.	0.2	0
273	Monitoring Signalling and Trafficking of Neurotensin Type 1 Receptor in Animal Model using Fluorescentâ€based Methods. FASEB Journal, 2019, 33, 502.4.	0.2	0
274	Identifying Plasmodium falciparum receptor activation using bioluminescence resonance energy transfer (BRET)-based biosensors in HEK293 cells. Methods in Cell Biology, 2021, 166, 223-233.	0.5	0