
Michele Zanoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3665093/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Cable Effects on Noise Propagation in Distribution Networks with Renewable Sources. , 2022, , .		1
2	Compensating Nonlinearities in Voltage Transformers for Enhanced Harmonic Measurements: The Simplified Volterra Approach. IEEE Transactions on Power Delivery, 2021, 36, 362-370.	4.3	24
3	Harmonic Synchrophasors Measurement Algorithms With Embedded Compensation of Voltage Transformer Frequency Response. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	4.7	15
4	A Simple Method for Compensating Harmonic Distortion in Current Transformers: Experimental Validation. Sensors, 2021, 21, 2907.	3.8	15
5	Black-Box Modelling of Low-Switching-Frequency Power Inverters for EMC Analyses in Renewable Power Systems. Energies, 2021, 14, 3413.	3.1	10
6	Advanced Machine Learning Functionalities in the Medium Voltage Distributed Monitoring System QuEEN: A Macro-Regional Voltage Dips Severity Analysis. Energies, 2021, 14, 7949.	3.1	3
7	An Innovative Approach to Express Uncertainty Introduced by Voltage Transformers. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 6696-6703.	4.7	13
8	Frequency-Domain Nonlinear Modeling Approaches for Power Systems Components—A Comparison. Energies, 2020, 13, 2609.	3.1	6
9	Combined Impact of Voltage Transformer and Estimation Algorithm on Harmonic Synchrophasors Measurements. , 2020, , .		2
10	Modelâ€based maximum power point tracking for photovoltaic panels: parameters identification and training database collection. IET Renewable Power Generation, 2020, 14, 2876-2884.	3.1	4
11	Deep Learning to Assess Voltage Dips Validity. , 2020, , .		4
12	Behavioral Representation of a Bridge Rectifier Using Simplified Volterra Models. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 1611-1618.	4.7	7
13	Frequency-Domain Modeling of Nonlinear Power System Devices: The Quasi-Sinusoidal Volterra Approach. , 2019, , .		1
14	Improving the Accuracy of Current Transformers through Harmonic Distortion Compensation. , 2019, , \cdot		6
15	Harmonic Distortion Compensation in Voltage Transformers for Improved Power Quality Measurements. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 3823-3830.	4.7	45
16	Behavioral Modeling of an Inductive Voltage Transformer: Comparison Between X-Parameters and Simplified Volterra Approaches. , 2019, , .		1
17	Model-Based MPPT Parameter optimization for Photovoltaic Panels. , 2019, , .		4
18	A Low-Cost Generator for Testing and Calibrating Current Transformers. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2792-2799.	4.7	26

MICHELE ZANONI

#	Article	IF	CITATIONS
19	Overcoming Frequency Response Measurements of Voltage Transformers: An Approach Based on Quasi-Sinusoidal Volterra Models. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2800-2807.	4.7	35
20	Definition of Simplified Frequency-Domain Volterra Models With Quasi-Sinusoidal Input. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 1652-1663.	5.4	20
21	Characterization of Voltage Instrument Transformers Under Nonsinusoidal Conditions Based on the Best Linear Approximation. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 2392-2400.	4.7	52
22	A Simple Method for Compensating the Harmonic Distortion Introduced by Voltage Transformers. , 2018, , .		8
23	Modeling and identification of a bridge rectifier under quasi-sinusoidal conditions. , 2018, , .		2
24	A Low-Cost Approach to the Skin Effect Compensation in Cylindrical Shunts. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 2266-2273.	4.7	2
25	Development of a low-cost generator for the testing of current transducers under non-sinusoidal conditions. , 2017, , .		1
26	Iterative method for the definition of frequency-domain volterra models. , 2017, , .		6
27	Voltage Transducers Testing Procedure Based on the Best Linear Approximation. , 2017, , .		9