Thomas Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3665091/publications.pdf

Version: 2024-02-01

44069 54911 8,143 140 48 84 citations h-index g-index papers 177 177 177 7549 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal timeâ€scales. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1337-1351.	2.7	497
2	Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 2020, 10, 20-29.	18.8	424
3	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 2014, 73, 76-107.	2.4	320
4	REPRESENTING MODEL UNCERTAINTY IN WEATHER AND CLIMATE PREDICTION. Annual Review of Earth and Planetary Sciences, 2005, 33, 163-193.	11.0	251
5	Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic Sea ice export. Geophysical Research Letters, 2000, 27, 989-992.	4.0	249
6	North Atlantic Interdecadal Variability: Oceanic Response to the North Atlantic Oscillation (1865–1997). Journal of Climate, 2001, 14, 676-691.	3.2	236
7	The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geoscientific Model Development, 2014, 7, 663-693.	3.6	205
8	High-Resolution Global Climate Simulations with the ECMWF Model in Project Athena: Experimental Design, Model Climate, and Seasonal Forecast Skill. Journal of Climate, 2012, 25, 3155-3172.	3.2	202
9	Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales. Bulletin of the American Meteorological Society, 2016, 97, 1631-1647.	3.3	199
10	Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization. Climate Dynamics, 2012, 39, 399-418.	3.8	190
11	The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification. Geoscientific Model Development, 2019, 12, 1139-1164.	3.6	168
12	Tropical Cyclone Climatology in a 10-km Global Atmospheric GCM: Toward Weather-Resolving Climate Modeling. Journal of Climate, 2012, 25, 3867-3893.	3.2	157
13	Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate. Climate Dynamics, 2015, 44, 757-780.	3.8	132
14	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 2016, 97, 65-90.	2.4	131
15	Characteristics of the Recent Eastward Shift of Interannual NAO Variability. Journal of Climate, 2003, 16, 3371-3382.	3.2	129
16	Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1839-1857.	2.7	116
17	An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, 93, 84-120.	2.4	107
18	The Benefits of Global High Resolution for Climate Simulation: Process Understanding and the Enabling of Stakeholder Decisions at the Regional Scale. Bulletin of the American Meteorological Society, 2018, 99, 2341-2359.	3.3	107

#	Article	IF	Citations
19	Evidence for Enhanced Land–Atmosphere Feedback in a Warming Climate. Journal of Hydrometeorology, 2012, 13, 981-995.	1.9	104
20	Finite-Element Sea Ice Model (FESIM), version 2. Geoscientific Model Development, 2015, 8, 1747-1761.	3.6	102
21	On the predictability of the extreme summer 2003 over Europe. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	97
22	Predictability of the Arctic sea ice edge. Geophysical Research Letters, 2016, 43, 1642-1650.	4.0	95
23	Understanding the local and global impacts of model physics changes: an aerosol example. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1479-1497.	2.7	93
24	The Finite-volumE Sea ice–Ocean Model (FESOM2). Geoscientific Model Development, 2017, 10, 765-789.	3.6	87
25	Arctic influence on subseasonal midlatitude prediction. Geophysical Research Letters, 2014, 41, 3676-3680.	4.0	83
26	Systematic Model Error: The Impact of Increased Horizontal Resolution versus Improved Stochastic and Deterministic Parameterizations. Journal of Climate, 2012, 25, 4946-4962.	3.2	82
27	Eddyâ€Resolving Simulation of the Atlantic Water Circulation in the Fram Strait With Focus on the Seasonal Cycle. Journal of Geophysical Research: Oceans, 2017, 122, 8385-8405.	2.6	82
28	Origin and predictability of the extreme negative NAO winter of 2009/10. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	81
29	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 2016, 100, 141-161.	2.4	81
30	The ECMWF model climate: recent progress through improved physical parametrizations. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 1145-1160.	2.7	77
31	Revolutionizing Climate Modeling with Project Athena: A Multi-Institutional, International Collaboration. Bulletin of the American Meteorological Society, 2013, 94, 231-245.	3.3	75
32	Simulations for CMIP6 With the AWI Climate Model AWIâ€CMâ€1â€1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002009.	3.8	72
33	The Resolution Sensitivity of Northern Hemisphere Blocking in Four 25-km Atmospheric Global Circulation Models. Journal of Climate, 2017, 30, 337-358.	3.2	71
34	Diagnosing the Origin of Extended-Range Forecast Errors. Monthly Weather Review, 2010, 138, 2434-2446.	1.4	69
35	An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, 94, 67-94.	2.4	68
36	Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications, 2022, 13, 727.	12.8	67

#	Article	IF	Citations
37	The Link between the North Atlantic Oscillation and Arctic Sea Ice Export through Fram Strait. Journal of Climate, 2001, 14, 3932-3943.	3.2	66
38	Sea ice leads in the Arctic Ocean: Model assessment, interannual variability and trends. Geophysical Research Letters, 2016, 43, 7019-7027.	4.0	66
39	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modelling, 2016, 99, 110-132.	2.4	64
40	Intensification of the Atlantic Water Supply to the Arctic Ocean Through Fram Strait Induced by Arctic Sea Ice Decline. Geophysical Research Letters, 2020, 47, e2019GL086682.	4.0	63
41	Systematic errors of the atmospheric circulation in the ECMWF forecasting system. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 1045-1073.	2.7	62
42	A simulation of small to giant <scp>A</scp> ntarctic iceberg evolution: Differential impact on climatology estimates. Journal of Geophysical Research: Oceans, 2017, 122, 3170-3190.	2.6	61
43	Bright Prospects for Arctic Sea Ice Prediction on Subseasonal Time Scales. Geophysical Research Letters, 2018, 45, 9731-9738.	4.0	60
44	Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability. Climate Dynamics, 2018, 50, 2369-2394.	3.8	59
45	Response to the Summer of 2003 Mediterranean SST Anomalies over Europe and Africa. Journal of Climate, 2006, 19, 5439-5454.	3.2	58
46	Estimation of the Impact of Sampling Errors in the VOS Observations on Air–Sea Fluxes. Part I: Uncertainties in Climate Means. Journal of Climate, 2007, 20, 279-301.	3.2	58
47	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Modelling, 2016, 99, 86-109.	2.4	58
48	Climatology and Interannual Variability in the Intensity of Synoptic-Scale Processes in the North Atlantic from the NCEP–NCAR Reanalysis Data. Journal of Climate, 2002, 15, 809-828.	3.2	56
49	The Canadian Arctic Archipelago throughflow in a multiresolution global model: Model assessment and the driving mechanism of interannual variability. Journal of Geophysical Research: Oceans, 2013, 118, 4525-4541.	2.6	54
50	The Intra-Seasonal Oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models. Climate Dynamics, 2012, 39, 2185-2206.	3.8	50
51	The Relative Influence of Atmospheric and Oceanic Model Resolution on the Circulation of the North Atlantic Ocean in a Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 2026-2041.	3.8	50
52	Future Changes in the Western North Pacific Tropical Cyclone Activity Projected by a Multidecadal Simulation with a 16-km Global Atmospheric GCM. Journal of Climate, 2014, 27, 7622-7646.	3.2	49
53	Ocean Modeling on a Mesh With Resolution Following the Local Rossby Radius. Journal of Advances in Modeling Earth Systems, 2017, 9, 2601-2614.	3.8	48
54	Arctic Sea Ice Decline Significantly Contributed to the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the Arctic Ocean. Geophysical Research Letters, 2018, 45, 4956-4964.	4.0	47

#	Article	IF	CITATIONS
55	A 4.5â€km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4. Geoscientific Model Development, 2018, 11, 1229-1255.	3.6	47
56	Performance of the ECMWF forecasting system in the Arctic during winter. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1327-1340.	2.7	45
57	Verification of global numerical weather forecasting systems in polar regions using TIGGE data. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 574-582.	2.7	44
58	Atlantic Water in the Nordic Seas: Locally eddy-permitting ocean simulation in a global setup. Journal of Geophysical Research: Oceans, 2017, 122, 914-940.	2.6	43
59	Polar Ocean Observations: A Critical Gap in the Observing System and Its Effect on Environmental Predictions From Hours to a Season. Frontiers in Marine Science, 2019, 6, .	2.5	43
60	Understanding the Anomalously Cold European Winter of 2005/06 Using Relaxation Experiments. Monthly Weather Review, 2010, 138, 3157-3174.	1.4	41
61	Recent Sea Ice Decline Did Not Significantly Increase the Total Liquid Freshwater Content of the Arctic Ocean. Journal of Climate, 2019, 32, 15-32.	3.2	40
62	Factors influencing Northern Hemisphere winter mean atmospheric circulation anomalies during the period 1960/61 to 2001/02. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1970-1982.	2.7	39
63	Seasonal Atmospheric Responses to Reduced Arctic Sea Ice in an Ensemble of Coupled Model Simulations. Journal of Climate, 2016, 29, 5893-5913.	3.2	39
64	Influence of a stochastic parameterization on the frequency of occurrence of North Pacific weather regimes in the ECMWF model. Geophysical Research Letters, 2005, 32, .	4.0	38
65	Evaluation of FESOM2.0 Coupled to ECHAM6.3: Preindustrial and HighResMIP Simulations. Journal of Advances in Modeling Earth Systems, 2019, 11, 3794-3815.	3.8	38
66	Estimation of the Impact of Sampling Errors in the VOS Observations on Air–Sea Fluxes. Part II: Impact on Trends and Interannual Variability. Journal of Climate, 2007, 20, 302-315.	3.2	36
67	Scaleâ€dependent verification of ensemble forecasts. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 973-984.	2.7	34
68	Enhanced crossâ€shelf exchange by tides in the western Ross Sea. Geophysical Research Letters, 2013, 40, 5735-5739.	4.0	33
69	North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations. Ocean Modelling, 2016, 104, 143-170.	2.4	32
70	Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2). Geoscientific Model Development, 2019, 12, 3991-4012.	3.6	32
71	Fast EVP Solutions in a Highâ€Resolution Sea Ice Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 1269-1284.	3.8	32
72	Impact of the Northern Hemisphere extratropics on the skill in predicting the Madden Julian Oscillation. Geophysical Research Letters, 2010, 37, .	4.0	31

#	Article	IF	Citations
73	Delayed Antarctic sea-ice decline in high-resolution climate change simulations. Nature Communications, 2022, 13, 637.	12.8	31
74	Possible Dynamical Mechanisms for Southern Hemisphere Climate Change due to the Ozone Hole. Journals of the Atmospheric Sciences, 2012, 69, 2917-2932.	1.7	30
75	The oceanic response to mesoscale atmospheric forcing. Geophysical Research Letters, 2014, 41, 1255-1260.	4.0	30
76	Predictability of Arctic sea ice on weather time scales. Scientific Reports, 2018, 8, 6514.	3.3	29
77	Determination of Cloud Liquid Water Path over the Oceans from Special Sensor Microwave/Imager (SSM/I) Data Using Neural Networks. Journal of Applied Meteorology and Climatology, 1998, 37, 832-844.	1.7	28
78	Local versus Tropical Diabatic Heating and the Winter North Atlantic Oscillation. Journal of Climate, 2007, 20, 2058-2075.	3.2	28
79	Remote control of North Atlantic Oscillation predictability via the stratosphere. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 706-719.	2.7	28
80	The Arctic Ocean in CMIP6 Models: Biases and Projected Changes in Temperature and Salinity. Earth's Future, 2022, 10, .	6.3	28
81	Sensitivity of the Tropospheric Circulation to Changes in the Strength of the Stratospheric Polar Vortex. Monthly Weather Review, 2006, 134, 2191-2207.	1.4	27
82	Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0. Geoscientific Model Development, 2019, 12, 2635-2656.	3.6	27
83	Eddy Kinetic Energy in the Arctic Ocean From a Global Simulation With a 1â€km Arctic. Geophysical Research Letters, 2020, 47, e2020GL088550.	4.0	27
84	A probabilistic verification score for contours: Methodology and application to Arctic iceâ€edge forecasts. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 735-743.	2.7	26
85	ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper. , 2018, n/a, .		25
86	Predictability of Antarctic Sea Ice Edge on Subseasonal Time Scales. Geophysical Research Letters, 2019, 46, 9719-9727.	4.0	24
87	On the Feedback of Ice–Ocean Stress Coupling from Geostrophic Currents in an Anticyclonic Wind Regime over the Beaufort Gyre. Journal of Physical Oceanography, 2019, 49, 369-383.	1.7	24
88	The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bulletin of the American Meteorological Society, 2020, 101, E1653-E1676.	3.3	24
89	Ocean Heat Transport Into the Barents Sea: Distinct Controls on the Upward Trend and Interannual Variability. Geophysical Research Letters, 2019, 46, 13180-13190.	4.0	23
90	Fast atmospheric response to a sudden thinning of Arctic sea ice. Climate Dynamics, 2016, 46, 1015-1025.	3.8	22

#	Article	lF	Citations
91	Polar Lower-Latitude Linkages and Their Role in Weather and Climate Prediction. Bulletin of the American Meteorological Society, 2015, 96, ES197-ES200.	3.3	21
92	Albedo of coastal landfast sea ice in Prydz Bay, Antarctica: Observations and parameterization. Advances in Atmospheric Sciences, 2016, 33, 535-543.	4.3	21
93	The Influences of the Arctic Troposphere on the Midlatitude Climate Variability and the Recent Eurasian Cooling. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,162.	3.3	21
94	Assessment of the Finite-volumE Sea ice-Ocean Model (FESOM2.0) $\hat{a}\in$ Part 1: Description of selected key model elements and comparison to its predecessor version. Geoscientific Model Development, 2019, 12, 4875-4899.	3.6	21
95	Long-term ocean simulations in FESOM: evaluation and application in studying the impact of Greenland Ice Sheet melting. Ocean Dynamics, 2012, 62, 1471-1486.	2.2	20
96	Potential sea ice predictability and the role of stochastic sea ice strength perturbations. Geophysical Research Letters, 2014, 41, 8396-8403.	4.0	20
97	How increasing CO ₂ leads to an increased negative greenhouse effect in Antarctica. Geophysical Research Letters, 2015, 42, 10,422.	4.0	20
98	Tropical origin of the severe European winter of 1962/1963. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 153-165.	2.7	20
99	Paving the Way for the Year of Polar Prediction. Bulletin of the American Meteorological Society, 2016, 97, ES85-ES88.	3.3	20
100	Relaxing the Tropics to an â€~observed' state: analysis using a simple baroclinic model. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1618-1626.	2.7	19
101	Influence of stochastic sea ice parametrization on climate and the role of atmosphere–sea ice–ocean interaction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130283.	3.4	19
102	The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2314-2323.	2.7	19
103	Reanalysis and reforecast of three major European storms of the twentieth century using the ECMWF forecasting system. Part I: Analyses and deterministic forecasts. Meteorological Applications, 2004, 11, 343-361.	2.1	18
104	Taking into Account Atmospheric Uncertainty Improves Sequential Assimilation of SMOS Sea Ice Thickness Data in an Ice–Ocean Model. Journal of Atmospheric and Oceanic Technology, 2016, 33, 397-407.	1.3	18
105	Some aspects of systematic error in the ECMWF model. Atmospheric Science Letters, 2005, 6, 133-139.	1.9	17
106	Reanalysis and reforecast of three major European storms of the twentieth century using the ECMWF forecasting system. Part II: Ensemble forecasts. Meteorological Applications, 2005, 12, 111-122.	2.1	17
107	Greenland's Pressure Drag and the Atlantic Storm Track. Journals of the Atmospheric Sciences, 2007, 64, 4004-4030.	1.7	16
108	Regional Structure of the Indian Summer Monsoon in Observations, Reanalysis, and Simulation. Journal of Climate, 2015, 28, 1824-1841.	3.2	16

#	Article	IF	CITATIONS
109	Brief communication: The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation. Cryosphere, 2016, 10, 761-774.	3.9	16
110	Diagnosing remote origins of forecast error: relaxation versus 4Dâ€Var dataâ€assimilation experiments. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 598-606.	2.7	15
111	Tropical impact on the East Asian winter monsoon. Geophysical Research Letters, 2012, 39, .	4.0	15
112	Increased Arctic influence on the midlatitude flow during Scandinavian Blocking episodes. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3846-3862.	2.7	15
113	Vortex splitting on a planetary scale in the stratosphere by cyclogenesis on a subplanetary scale in the troposphere. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 691-705.	2.7	14
114	The July 2019 European Heat Wave in a Warmer Climate: Storyline Scenarios with a Coupled Model Using Spectral Nudging. Journal of Climate, 2022, 35, 2373-2390.	3.2	14
115	Origin of variability in Northern Hemisphere winter blocking on interannual to decadal timescales. Geophysical Research Letters, 2015, 42, 10,037.	4.0	13
116	Using NWP to assess the influence of the Arctic atmosphere on midlatitude weather and climate. Advances in Atmospheric Sciences, 2018, 35, 5-13.	4.3	13
117	The Role of Sea Ice in Sub-seasonal Predictability. , 2019, , 201-221.		12
118	On the impact of wind forcing on the seasonal variability of Weddell Sea Bottom Water transport. Geophysical Research Letters, 2012, 39, .	4.0	11
119	Assessment of the Finite-VolumE Sea ice–Ocean Model (FESOM2.0) – Part 2: Partial bottom cells, embedded sea ice and vertical mixing library CVMix. Geoscientific Model Development, 2022, 15, 335-363.	3.6	11
120	Arctic Amplification of Precipitation Changesâ€"The Energy Hypothesis. Geophysical Research Letters, 2021, 48, e2021GL094977.	4.0	10
121	Influence of a Salt Plume Parameterization in a Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 2357-2373.	3 . 8	9
122	An analysis of trends in the boreal winter mean tropospheric circulation during the second half of the 20th century. Geophysical Research Letters, 2012, 39, .	4.0	8
123	Aspects of weather parameters at Neumayer station, Antarctica, and their representation in reanalysis and climate model data. Meteorologische Zeitschrift, 2013, 22, 699-709.	1.0	7
124	High-Latitude Dynamics of Atmosphere–Ice–Ocean Interactions. Bulletin of the American Meteorological Society, 2016, 97, ES179-ES182.	3.3	7
125	How Strong Is Influence of the Tropics and Midlatitudes on the Arctic Atmospheric Circulation and Climate Change?. Geophysical Research Letters, 2019, 46, 4942-4952.	4.0	7
126	Quantifying two-way influences between the Arctic and mid-latitudes through regionally increased CO2 concentrations in coupled climate simulations. Climate Dynamics, 2020, 54, 3307-3321.	3.8	7

#	Article	IF	CITATIONS
127	Atmospheric Wind Biases: A Challenge for Simulating the Arctic Ocean in Coupled Models?. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017565.	2.6	7
128	Remote impact of the Antarctic atmosphere on the southern mid-latitudes. Meteorologische Zeitschrift, 2016, 25, 71-77.	1.0	6
129	Preface to the special issue: Towards improving understanding and prediction of Arctic change and its linkage with Eurasian mid-latitude weather and climate. Advances in Atmospheric Sciences, 2018, 35, 1-4.	4.3	6
130	AMOC Variability and Watermass Transformations in the AWI Climate Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002582.	3.8	6
131	The potential of numerical prediction systems to support the design of Arctic observing systems: Insights from the <scp>APPLICATE</scp> and <scp>YOPP</scp> projects. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3863-3877.	2.7	6
132	Optimal atmospheric forcing perturbations for the cold-ocean warm-land pattern. Tellus, Series A: Dynamic Meteorology and Oceanography, 2008, 60, 528-546.	1.7	5
133	Austral winter external and internal atmospheric variability between 1980 and 2014. Geophysical Research Letters, 2016, 43, 2234-2239.	4.0	5
134	Short-Range and Medium-Range Weather Forecasting in the Extratropics during Wintertime with and without an Interactive Ocean. Monthly Weather Review, 2006, 134, 1972-1986.	1.4	4
135	Editorial for the Quarterly Journal's special issue on Polar Prediction. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 537-538.	2.7	3
136	The Abisko Polar Prediction School. Bulletin of the American Meteorological Society, 2017, 98, 445-447.	3.3	2
137	Response of Northern Hemisphere weather and climate to Arctic sea ice decline: Resolution independence in Polar Amplification Model Intercomparison Project (PAMIP) simulations. Journal of Climate, 2021, , 1-39.	3.2	2
138	Optimal atmospheric forcing perturbations for the cold-ocean warm-land pattern. Tellus, Series A: Dynamic Meteorology and Oceanography, 2008, 60, 528-546.	1.7	2
139	Preface to the Special Issue on Antarctic Meteorology and Climate: Past, Present and Future. Advances in Atmospheric Sciences, 2020, 37, 421-422.	4.3	1
140	How to get your message across: designing an impactful knowledge transfer plan in a European project. Geoscience Communication, 2022, 5, 87-100.	0.9	0