Xiujie Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3664277/publications.pdf

Version: 2024-02-01

		236612	315357
79	1,865	25	38
papers	citations	h-index	g-index
80	80	80	1667
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Binder Type on MWW-Based Catalysts for the Liquid-Phase Alkylation Reaction of Benzene with Ethylene. Industrial & Engineering Chemistry Research, 2022, 61, 2693-2700.	1.8	5
2	\hat{l}^3 -Butyrolactone-Assisted Route for the Fast Synthesis of \hat{l}^2 -Zeolite and Its Application in the Alkylation of Benzene with Isobutylene. Industrial & Engineering Chemistry Research, 2022, 61, 403-412.	1.8	0
3	Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization. Angewandte Chemie, 2022, 134, .	1.6	7
4	Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
5	Elucidating the Active-Phase Evolution of Fe-Based Catalysts during Isobutane Dehydrogenation with and without CO ₂ in Feed Gas. ACS Catalysis, 2022, 12, 5930-5938.	5.5	10
6	Generating Assembled MFI Nanocrystals with Reduced <i>b</i> â€Axis through Structureâ€Directing Agent Exchange Induced Recrystallization. Angewandte Chemie, 2021, 133, 14078-14087.	1.6	5
7	Generating Assembled MFI Nanocrystals with Reduced <i>b</i> â€Axis through Structureâ€Directing Agent Exchange Induced Recrystallization. Angewandte Chemie - International Edition, 2021, 60, 13959-13968.	7.2	31
8	Promising Strategy to Synthesize ZSM-5@Silicalite-1 with Superior Catalytic Performance for Catalytic Cracking Reactions. Industrial & Engineering Chemistry Research, 2021, 60, 9098-9106.	1.8	7
9	Direct Preparation of *MRE Zeolites with Ultralarge Mesoporosity: Strategy and Working Mechanism. ACS Applied Materials & Direct Preparation of *MRE Zeolites with Ultralarge Mesoporosity: Strategy and Working Mechanism.	4.0	15
10	The Role of Organic and Inorganic Structure-Directing Agents in Selective Al Substitution of Zeolite. Journal of Physical Chemistry Letters, 2021, 12, 9398-9406.	2.1	16
11	Co-Crystalline ZSM-5/ZSM-11 Nanostructures for Alkylation of Benzene with Ethanol. ACS Applied Nano Materials, 2021, 4, 10296-10306.	2.4	7
12	Constrained Al sites in FER-type zeolites. Chinese Journal of Catalysis, 2021, 42, 2078-2087.	6.9	11
13	Green synthesis route for MCM-49 zeolite using a seed-assisted method by virtue of an ultraphonic aging procedure. Inorganic Chemistry Frontiers, 2021, 8, 2575-2583.	3.0	7
14	Defect-Dependent Selective C–H/C–C Bond Cleavage of Propane in the Presence of CO ₂ over FeNi/Ceria Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 17301-17309.	3.2	5
15	N-methyl-2-pyrrolidone-induced conversion of USY into hollow Beta zeolite and its application in the alkylation of benzene with isobutylene. Microporous and Mesoporous Materials, 2020, 294, 109944.	2.2	11
16	$\langle i \rangle N \langle i \rangle$ -Methyl-2-pyrrolidone-promoted crystallization of MEL zeolite and its acceleration mechanism. Journal of Materials Chemistry A, 2020, 8, 26139-26149.	5.2	6
17	Aluminous ZSM-48 Zeolite Synthesis Using a Hydroisomerization Intermediate Mimicking Allyltrimethylammonium Chloride as a Structure-Directing Agent. Industrial & Engineering Chemistry Research, 2020, 59, 11139-11148.	1.8	18
18	Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nature Communications, 2019, 10, 4348.	5.8	102

#	Article	IF	CITATIONS
19	Ultrathin nanosheets of aluminosilicate FER zeolites synthesized in the presence of a sole small organic ammonium. Journal of Materials Chemistry A, 2019, 7, 16671-16676.	5.2	27
20	Synthesis and catalytic application of FER zeolites with controllable size. Journal of Materials Chemistry A, 2019, 7, 7573-7580.	5.2	41
21	Direct synthesis of hollow single-crystalline zeolite beta using a small organic lactam as a recyclable hollow-directing agent. Journal of Materials Chemistry A, 2019, 7, 10795-10804.	5. 2	25
22	Adjustment of the Al siting in MCM-22 zeolite and its effect on alkylation performance of ethylene with benzene. Catalysis Today, 2018, 316, 71-77.	2.2	28
23	Synthesis, characterization, and catalytic performance of hierarchical ZSM-11 zeolite synthesized via dual-template route. Chinese Journal of Catalysis, 2018, 39, 167-180.	6.9	19
24	Organic promoter-driven fast synthesis of zeolite beta and its acceleration mechanism. Journal of Materials Chemistry A, 2018, 6, 24614-24624.	5.2	26
25	IM-5 Zeolite Treated with Mixed Solution of NaOH and TPABr: Characterization and Application for Alkylation of Benzene with Ethanol. Catalysis Letters, 2018, 148, 2030-2041.	1.4	8
26	Direct synthesis of three-dimensional MWW zeolite with cyclohexylamine as an organic structure-directing agent. Journal of Materials Chemistry A, 2018, 6, 12244-12249.	5.2	24
27	A shaped binderless ZSM-11 zeolite catalyst for direct amination of isobutene to tert-butylamine. Chinese Journal of Catalysis, 2017, 38, 168-175.	6.9	16
28	Shaped binderless ZSM-11 zeolite catalyst prepared via a dry-gel conversion method: Characterization and application for alkylation of benzene with dimethyl ether. Journal of Energy Chemistry, 2017, 26, 380-389.	7.1	13
29	Bridging Dealumination and Desilication for the Synthesis of Hierarchical MFI Zeolites. Angewandte Chemie, 2017, 129, 12727-12730.	1.6	12
30	Bridging Dealumination and Desilication for the Synthesis of Hierarchical MFI Zeolites. Angewandte Chemie - International Edition, 2017, 56, 12553-12556.	7.2	71
31	The distribution analysis on the proton siting and the acid strength of the zeolite ferrierite: A computational study. Microporous and Mesoporous Materials, 2017, 239, 354-362.	2.2	11
32	Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. RSC Advances, 2016, 6, 95855-95864.	1.7	30
33	Hierarchical ZSM-11 zeolite prepared by alkaline treatment with mixed solution of NaOH and CTAB: characterization and application for alkylation of benzene with dimethyl ether. Catalysis Science and Technology, 2016, 6, 1328-1342.	2.1	44
34	Metathesis of 1â€Butene to Propene over Mo/Al ₂ O ₃ @SBAâ€15: Influence of Alumina Introduction Methods on Catalytic Performance. Chemistry - an Asian Journal, 2015, 10, 1647-1659.	1.7	7
35	Alkali treatment upon MCM-49 zeolite with various contents of HMI in the presence of CTAB and application in anisole acylation with acetic anhydride. Applied Catalysis A: General, 2015, 495, 152-161.	2.2	14
36	Effect of Desilication on the Performance of Hierarchical ZSM-11 Catalysts for Alkylation of Benzene with Dimethyl Ether. Catalysis Letters, 2015, 145, 1972-1983.	1.4	19

#	Article	IF	CITATIONS
37	Catalytic Degradation of LDPE and PP over MCM-49 Based Micro–Mesoporous Composites. Catalysis Letters, 2014, 144, 1296-1304.	1.4	10
38	Investigations into the C4 olefin metathesis over Mo/Al2O3: Effects of support nature and pretreatment conditions on the product distribution. Applied Catalysis A: General, 2014, 472, 92-100.	2.2	12
39	Interzeolite conversion of zeolite MCM-49 into zeolite ZSM-35 in cyclohexylamine–hexamethyleneimine–Na2O–H2O containing systems. New Journal of Chemistry, 2014, 38, 2514.	1.4	16
40	Realumination of MCM-22 Zeolite and Its Application in Alkylation Reaction. Catalysis Letters, 2014, 144, 1223-1232.	1.4	5
41	Improvement of vapor-phase silylation and thermal stability of silylated MCM-22 zeolite. Journal of Porous Materials, 2013, 20, 1217-1224.	1.3	2
42	Determination of different acid sites in Beta zeolite for anisole acylation with acetic anhydride. Journal of Catalysis, 2013, 307, 103-110.	3.1	35
43	Activity enhancement of ZSM-35 in dimethyl ether carbonylation reaction through alkaline modifications. RSC Advances, 2013, 3, 16549.	1.7	44
44	1-Butene metathesis over Mo/mordenite-alumina catalyst: Effect of sodium exchange degree in mordenite zeolite. Journal of Molecular Catalysis A, 2013, 372, 121-127.	4.8	11
45	Transformation of Isobutyl Alcohol to Aromatics over Zeolite-Based Catalysts. ACS Catalysis, 2012, 2, 1203-1210.	5 . 5	88
46	Organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite. Microporous and Mesoporous Materials, 2012, 147, 117-126.	2.2	76
47	Catalytic role of different pore systems in MCM-49 zeolite for liquid alkylation of benzene with ethylene. Journal of Catalysis, 2011, 283, 68-74.	3.1	62
48	Effects of Zinc and Magnesium Addition to ZSM-5 on the Catalytic Performances in 1-hexene Aromatization Reaction. Catalysis Letters, 2011, 141, 1498-1505.	1.4	20
49	Influences of alkaline treatment on the structure and catalytic performances of ZSM-5/ZSM-11 zeolites with alumina as binder. Journal of Molecular Catalysis A, 2011, 336, 34-41.	4.8	25
50	Cross metathesis of butene-2 and ethene to propene over Mo/MCM-22-Al2O3 catalysts with different Al2O3 contents. Journal of Natural Gas Chemistry, 2010, 19, 482-486.	1.8	22
51	Highly selective ethylbenzene production through alkylation of dilute ethylene with gas phase-liquid phase benzene and transalkylation feed. Journal of Natural Gas Chemistry, 2009, 18, 21-24.	1.8	16
52	1-Butene Cracking to Propene on High Silica HMCM-22: Relations Between Product Distribution and Feed Conversion Under Various Temperatures. Catalysis Letters, 2009, 130, 204-210.	1.4	9
53	Two New On-Purpose Processes Enhancing Propene Production: Catalytic Cracking of C4 Alkenes to Propene and Metathesis of Ethene and 2-Butene to Propene. Catalysis Surveys From Asia, 2009, 13, 1-8.	1.0	29
54	Promoted aromatization and isomerization performance over ZSM-5 zeolite modified by the combined alkali-steam treatment. Reaction Kinetics and Catalysis Letters, 2009, 98, 117-124.	0.6	6

#	Article	IF	CITATIONS
55	Interactions of phosphorous molecules with the acid sites of H-Beta zeolite: Insights from solid-state NMR techniques and theoretical calculations. Journal of Molecular Catalysis A, 2009, 310, 113-120.	4.8	21
56	Promoting effect of Mg in supported Mo/HBeta–Al2O3 catalyst for cross-metathesis of ethene and butene-2 to propene. Journal of Molecular Catalysis A, 2009, 313, 38-43.	4.8	22
57	Phase selection controlled by sodium ions in the synthesis of FAU/LTA composite zeolite. Science and Technology of Advanced Materials, 2009, 10, 015001.	2.8	15
58	Insights into the Deactivation Mechanism of Heterogeneous Mo/Hβ-Al ₂ O ₃ Catalysts for Olefin Metathesis. Journal of Physical Chemistry C, 2009, 113, 8228-8233.	1.5	37
59	Modification of HY zeolite by fluorine and its influence on olefin alkylation thiophenic sulfur in gasoline. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 503-508.	0.8	6
60	Olefins alkylation thiophenic sulfur of the real gasoline over the fluorinated Hbeta zeolite catalyst. Fuel Processing Technology, 2008, 89, 1135-1141.	3.7	16
61	Olefin Metathesis over Heterogeneous Catalysts:  Interfacial Interaction between Mo Species and a Hβâ^'Al ₂ O ₃ Composite Support. Journal of Physical Chemistry C, 2008, 112, 5955-5960.	1.5	42
62	The role of alumina in the supported Mo/HBeta–Al2O3 catalyst for olefin metathesis: A high-resolution solid-state NMR and electron microscopy study. Journal of Catalysis, 2007, 250, 55-66.	3.1	82
63	A high-resolution MAS NMR study on the potential catalysts Mo/HBeta for olefin metathesis: The interaction of Mo species with HBeta zeolite. Journal of Molecular Catalysis A, 2006, 250, 94-99.	4.8	36
64	Study on the carburizing character of iron catalysts by Temperature Programmed Surface reaction of carburizationÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 73-79.	0.6	0
65	Butene Catalytic Cracking to Propene and Ethene over Potassium Modified ZSM-5 Catalysts. Catalysis Letters, 2005, 103, 201-210.	1.4	44
66	Synthesis and Catalytic Reactivity of MCM-22/ZSM-35 Composites for Olefin Aromatization. Catalysis Letters, 2005, 103, 211-218.	1.4	32
67	CO Hydrogenation to Light Alkenes Over Mn/Fe Catalysts Prepared by Coprecipitation and Sol-gel Methods. Catalysis Letters, 2005, 105, 93-101.	1.4	52
68	Effect of acid strength distribution on conversion of FCC gasoline over a ZSM-5 zeolite catalyst. Reaction Kinetics and Catalysis Letters, 2005, 84, 45-51.	0.6	2
69	The Role of Acid Strength of Zeolites in Liquid-Phase Alkylation of Benzene with Ethylene. Catalysis Letters, 2004, 94, 75-79.	1.4	23
70	Comparison of 6Mo/MCM-22 and 6Mo/ZSM-5 in the MDA process. Reaction Kinetics and Catalysis Letters, 2004, 82, 279-286.	0.6	14
71	Metathesis of ethylene and butylene-2 to propylene with Mo on $H\hat{l}^2$ -Al2O3 catalysts. Catalysis Today, 2004, 93-95, 471-476.	2.2	33
72	The Effect of Acidity on Olefin Aromatization over Potassium Modified ZSM-5 Catalysts. Catalysis Letters, 2004, 97, 31-36.	1.4	77

XIUJIE LI

#	Article	IF	CITATION
73	Shape Selectivity in Methane Dehydroaromatization Over Mo/MCM-22 Catalysts During a Lifetime Experiment. Catalysis Letters, 2003, 90, 123-130.	1.4	36
74	Title is missing!. Reaction Kinetics and Catalysis Letters, 2002, 76, 151-159.	0.6	9
75	Kinetics of Methane Partial Oxidation to Syngas over a LiLaNiO/ \hat{l}^3 -Al2O3 Catalyst. Reaction Kinetics and Catalysis Letters, 2001, 73, 333-340.	0.6	1
76	Partial Oxidation of Ethane to Syngas over Supported Metal Catalysts. Reaction Kinetics and Catalysis Letters, 2000, 70, 311-317.	0.6	4
77	Title is missing!. Catalysis Letters, 1999, 63, 167-171.	1.4	26
78	Title is missing!. Catalysis Letters, 1999, 62, 185-189.	1.4	32
79	Understanding the roles of different acid sites in beta zeolites with different particle sizes catalyzed liquid-phase transalkylation of diethylbenzene with benzene. Catalysis Science and Technology, 0, , .	2.1	3