Assaf Shapira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chondroitin sulfate-AuNRs electroactive scaffolds for on-demand release of biofactors. Journal of Nanobiotechnology, 2022, 20, 59.	9.1	5
2	Regenerating the Injured Spinal Cord at the Chronic Phase by Engineered iPSCsâ€Đerived 3D Neuronal Networks. Advanced Science, 2022, 9, e2105694.	11.2	23
3	Oneâ€Step 3D Printing of Heart Patches with Builtâ€In Electronics for Performance Regulation. Advanced Science, 2021, 8, 2004205.	11.2	39
4	3D Tissue and Organ Printing—Hope and Reality. Advanced Science, 2021, 8, 2003751.	11.2	54
5	Injectable Nanocomposite Implants Reduce ROS Accumulation and Improve Heart Function after Infarction. Advanced Science, 2021, 8, e2102919.	11.2	30
6	Transparent support media for high resolution 3D printing of volumetric cell-containing ECM structures. Biomedical Materials (Bristol), 2020, 15, 045018.	3.3	33
7	Injectable Cardiac Cell Microdroplets for Tissue Regeneration. Small, 2020, 16, e1904806.	10.0	24
8	Tissue Engineering: 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts (Adv.) Tj ETQq0	0 0 rgBT /	Overlock 10
	Channeled ECM-Based Nanofibrous Hydrogel for Engineering Vascularized Cardiac Tissues.		

9	Nanomaterials, 2019, 9, 689.	4.1	12
10	A Stretchable and Flexible Cardiac Tissue–Electronics Hybrid Enabling Multiple Drug Release, Sensing, and Stimulation. Small, 2019, 15, e1805526.	10.0	52
11	3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Advanced Science, 2019, 6, 1900344.	11.2	612
12	Personalized Tissue Implants: Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants (Adv. Mater. 1/2019). Advanced Materials, 2019, 31, 1970007.	21.0	4
13	Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants. Advanced Materials, 2019, 31, e1803895.	21.0	85
14	Stabilization strategies in extrusion-based 3D bioprinting for tissue engineering. Applied Physics Reviews, 2018, 5, 041112.	11.3	44
15	Multifunctional degradable electronic scaffolds for cardiac tissue engineering. Journal of Controlled Release, 2018, 281, 189-195.	9.9	58
16	Modular assembly of thick multifunctional cardiac patches. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1898-1903.	7.1	126
17	Selective eradication of cancer cells by delivery of adenovirus-based toxins. Oncotarget, 2017, 8, 38581-38591.	1.8	14
18	Engineered hybrid cardiac patches with multifunctional electronics for online monitoringÂand regulation of tissue function. Nature Materials, 2016, 15, 679-685.	27.5	363

ASSAF SHAPIRA

#	Article	IF	CITATIONS
19	Optimization of <scp>EGFR</scp> high positive cell isolation procedure by design of experiments methodology. Cytometry Part B - Clinical Cytometry, 2015, 88, 338-347.	1.5	9
20	Effect of fiber diameter on the assembly of functional 3D cardiac patches. Nanotechnology, 2015, 26, 291002.	2.6	43
21	Omentum ECM-based hydrogel as a platform for cardiac cell delivery. Biomedical Materials (Bristol), 2015, 10, 034106.	3.3	43
22	Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin. PLoS ONE, 2012, 7, e32320.	2.5	24
23	Engineered Toxins "Zymoxins―Are Activated by the HCV NS3 Protease by Removal of an Inhibitory Protein Domain. PLoS ONE, 2011, 6, e15916.	2.5	8
24	Toxin-Based Therapeutic Approaches. Toxins, 2010, 2, 2519-2583.	3.4	118