Assaf Shapira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663605/publications.pdf

Version: 2024-02-01

24 1,842 17 24 papers citations h-index g-index

24 24 2947
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Advanced Science, 2019, 6, 1900344.	11.2	612
2	Engineered hybrid cardiac patches with multifunctional electronics for online monitoringÂand regulation of tissue function. Nature Materials, 2016, 15, 679-685.	27.5	363
3	Modular assembly of thick multifunctional cardiac patches. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1898-1903.	7.1	126
4	Toxin-Based Therapeutic Approaches. Toxins, 2010, 2, 2519-2583.	3.4	118
5	Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants. Advanced Materials, 2019, 31, e1803895.	21.0	85
6	Multifunctional degradable electronic scaffolds for cardiac tissue engineering. Journal of Controlled Release, 2018, 281, 189-195.	9.9	58
7	3D Tissue and Organ Printing—Hope and Reality. Advanced Science, 2021, 8, 2003751.	11.2	54
8	A Stretchable and Flexible Cardiac Tissue–Electronics Hybrid Enabling Multiple Drug Release, Sensing, and Stimulation. Small, 2019, 15, e1805526.	10.0	52
9	Stabilization strategies in extrusion-based 3D bioprinting for tissue engineering. Applied Physics Reviews, 2018, 5, 041112.	11.3	44
10	Effect of fiber diameter on the assembly of functional 3D cardiac patches. Nanotechnology, 2015, 26, 291002.	2.6	43
11	Omentum ECM-based hydrogel as a platform for cardiac cell delivery. Biomedical Materials (Bristol), 2015, 10, 034106.	3.3	43
12	Oneâ€Step 3D Printing of Heart Patches with Builtâ€In Electronics for Performance Regulation. Advanced Science, 2021, 8, 2004205.	11.2	39
13	Transparent support media for high resolution 3D printing of volumetric cell-containing ECM structures. Biomedical Materials (Bristol), 2020, 15, 045018.	3.3	33
14	Injectable Nanocomposite Implants Reduce ROS Accumulation and Improve Heart Function after Infarction. Advanced Science, 2021, 8, e2102919.	11.2	30
15	Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin. PLoS ONE, 2012, 7, e32320.	2.5	24
16	Injectable Cardiac Cell Microdroplets for Tissue Regeneration. Small, 2020, 16, e1904806.	10.0	24
17	Regenerating the Injured Spinal Cord at the Chronic Phase by Engineered iPSCsâ€Derived 3D Neuronal Networks. Advanced Science, 2022, 9, e2105694.	11.2	23

Tissue Engineering: 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts (Adv.) Tj ETQq0 0 0 11.2 PTQq0 10 11.2 PTQq0 10 11.2 PTQq0 11.2 PTQq0

#	Article	IF	CITATION
19	Selective eradication of cancer cells by delivery of adenovirus-based toxins. Oncotarget, 2017, 8, 38581-38591.	1.8	14
20	Channeled ECM-Based Nanofibrous Hydrogel for Engineering Vascularized Cardiac Tissues. Nanomaterials, 2019, 9, 689.	4.1	12
21	Optimization of <scp>EGFR</scp> high positive cell isolation procedure by design of experiments methodology. Cytometry Part B - Clinical Cytometry, 2015, 88, 338-347.	1.5	9
22	Engineered Toxins "Zymoxins―Are Activated by the HCV NS3 Protease by Removal of an Inhibitory Protein Domain. PLoS ONE, 2011, 6, e15916.	2.5	8
23	Chondroitin sulfate-AuNRs electroactive scaffolds for on-demand release of biofactors. Journal of Nanobiotechnology, 2022, 20, 59.	9.1	5
24	Personalized Tissue Implants: Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants (Adv. Mater. 1/2019). Advanced Materials, 2019, 31, 1970007.	21.0	4