Timothy D Vaden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol. Proceedings of the United States of America, 2011, 108, 2190-2195.	7.1	354
2	Sensing the anomeric effect in a solvent-free environment. Nature, 2011, 469, 76-79.	27.8	138
3	Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6658-6663.	7.1	102
4	Evaporatively cooled M+(H2O)Ar cluster ions: Infrared spectroscopy and internal energy simulations. Journal of Chemical Physics, 2004, 121, 3102-3107.	3.0	70
5	Vibrational Spectroscopy and Conformational Structure of Protonated Polyalanine Peptides Isolated in the Gas Phase. Journal of Physical Chemistry A, 2008, 112, 4608-4616.	2.5	66
6	Infrared spectroscopy of the Li+(H2O)Ar complex: the role of internal energy and its dependence on ion preparation. Physical Chemistry Chemical Physics, 2006, 8, 3078.	2.8	65
7	Rotational structure in the asymmetric OH stretch of Cs+(H2O)Ar. Journal of Chemical Physics, 2002, 117, 4628-4631.	3.0	64
8	Infrared Spectroscopy of Ionophore-Model Systems: Hydrated Alkali Metal Ion 18-Crown-6 Ether Complexes. Journal of the American Chemical Society, 2009, 131, 17277-17285.	13.7	54
9	Infrared spectroscopy and structure of photochemically protonated biomolecules in the gas phase: a noradrenaline analogue, lysine and alanyl alanine. Physical Chemistry Chemical Physics, 2007, 9, 2549.	2.8	51
10	Conformational Preferences of an Amyloidogenic Peptide: IR Spectroscopy of Ac-VQIVYK-NHMe. Journal of the American Chemical Society, 2008, 130, 14640-14650.	13.7	43
11	Characterization of hydrated Na+(phenol) and K+(phenol) complexes using infrared spectroscopy. Journal of Chemical Physics, 2004, 120, 721-730.	3.0	40
12	Intramolecular interactions in protonated peptides: H+PheGlyGly and H+GlyGlyPhe. Physical Chemistry Chemical Physics, 2008, 10, 1443-1447.	2.8	39
13	Correlating Lipid Membrane Permeabilities of Imidazolium Ionic Liquids with their Cytotoxicities on Yeast, Bacterial, and Mammalian Cells. Biomolecules, 2019, 9, 251.	4.0	37
14	Exploring Carbohydrateâ``Peptide Interactions in the Gas Phase: Structure and Selectivity in Complexes of Pyranosides with <i>N</i> -Acetylphenylalanine Methylamide. Journal of the American Chemical Society, 2011, 133, 4548-4557.	13.7	35
15	Observation of β-Sheet Aggregation in a Gas-Phase Tau-Peptide Dimer. Journal of the American Chemical Society, 2009, 131, 2472-2474.	13.7	33
16	Activity and characterization of a pH-sensitive antimicrobial peptide. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 182984.	2.6	33
17	Molybdenum phosphide-graphite nanomaterials for efficient electrocatalytic hydrogen production. Applied Catalysis A: General, 2015, 490, 101-107.	4.3	31
18	Quantitative Evaluation of Myoglobin Unfolding in the Presence of Guanidinium Hydrochloride and Ionic Liquids in Solution. Journal of Physical Chemistry B, 2014, 118, 406-412.	2.6	29

TIMOTHY D VADEN

#	Article	IF	CITATIONS
19	Competing Non-covalent Interactions in Alkali Metal Ionâ^'Acetonitrileâ^'Water Clusters. Journal of Physical Chemistry A, 2005, 109, 3880-3886.	2.5	28
20	Complexation between Cu(II) and curcumin in the presence of two different segments of amyloid β. Biophysical Chemistry, 2013, 184, 62-67.	2.8	28
21	Synergistic interactions of ionic liquids and antimicrobials improve drug efficacy. IScience, 2021, 24, 101853.	4.1	26
22	Extending the Capabilities of Single Particle Mass Spectrometry: I. Measurements of Aerosol Number Concentration, Size Distribution, and Asphericity. Aerosol Science and Technology, 2011, 45, 113-124.	3.1	24
23	Extending the Capabilities of Single Particle Mass Spectrometry: II. Measurements of Aerosol Particle Density without DMA. Aerosol Science and Technology, 2011, 45, 125-135.	3.1	23
24	Conductivity and Spectroscopic Investigation of Bis(trifluoromethanesulfonyl)imide Solution in Ionic Liquid 1-Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide. Journal of Physical Chemistry B, 2012, 116, 6553-6560.	2.6	23
25	Competition between cation-Ï€ interactions and intermolecular hydrogen bonds in alkali metal ion-phenol clusters. I. Phenol dimer. Journal of Chemical Physics, 2005, 123, 074302.	3.0	22
26	Molybdenum/graphene – Based catalyst for hydrogen evolution reaction synthesized by a rapid photothermal method. International Journal of Hydrogen Energy, 2014, 39, 11528-11536.	7.1	22
27	Synergistic effects of polymyxin and ionic liquids on lipid vesicle membrane stability and aggregation. Biophysical Chemistry, 2017, 227, 1-7.	2.8	22
28	Conformational effects in sugar ions: spectroscopic investigations in the gas phase and in solution. Chemical Science, 2012, 3, 2307.	7.4	19
29	Kinetics and mass spectrometric measurements of myoglobin unfolding in aqueous ionic liquid solutions. International Journal of Biological Macromolecules, 2016, 85, 200-207.	7.5	18
30	Effects of Ionic Liquid Alkyl Chain Length on Denaturation of Myoglobin by Anionic, Cationic, and Zwitterionic Detergents. Biomolecules, 2019, 9, 264.	4.0	17
31	Heme Dissociation from Myoglobin in the Presence of the Zwitterionic Detergent N,N-Dimethyl-N-Dodecylglycine Betaine: Effects of Ionic Liquids. Biomolecules, 2018, 8, 126.	4.0	16
32	Infrared spectroscopy of †forbidden' peptide sequences. Physical Chemistry Chemical Physics, 2009, 11, 5843.	2.8	14
33	Conductivity, Spectroscopic, and Computational Investigation of H ₃ O ⁺ Solvation in Ionic Liquid BMIBF ₄ . Journal of Physical Chemistry B, 2013, 117, 7057-7064.	2.6	14
34	Characterization of the Bridged Proton Structure in HTFSI Acid Ionic Liquid Solutions. Journal of Physical Chemistry B, 2015, 119, 6304-6310.	2.6	14
35	Effects of Ionic Liquids on Metalloproteins. Molecules, 2021, 26, 514.	3.8	14
36	Investigation of competing interactions in alkali metal ion–acetone–water clusters. Chemical Physics Letters, 2005, 408, 54-58.	2.6	12

TIMOTHY D VADEN

#	Article	IF	CITATIONS
37	An Experimental and Molecular Dynamics Study of Red Fluorescent Protein mCherry in Novel Aqueous Amino Acid Ionic Liquids. Journal of Physical Chemistry B, 2017, 121, 4823-4832.	2.6	11
38	Structural Destabilization of Azurin by Imidazolium Chloride Ionic Liquids in Aqueous Solution. Journal of Physical Chemistry B, 2019, 123, 6933-6945.	2.6	11
39	Competition between cation-ï€ interactions and intermolecular hydrogen bonds in alkali metal ion-phenol clusters. II. Phenol trimer. Journal of Chemical Physics, 2006, 124, 214315.	3.0	9
40	Thermodynamic and conductivity properties of acetic acid — EMIMOAc ionic liquid solutions. Journal of Molecular Liquids, 2016, 216, 710-715.	4.9	7
41	Thermodynamic destabilization of azurin by four different tetramethylguanidinium amino acid ionic liquids. International Journal of Biological Macromolecules, 2021, 180, 355-364.	7.5	7
42	Proton transfer and esterification reactions in EMIMOAc-based acidic ionic liquids. RSC Advances, 2017, 7, 18333-18339.	3.6	6
43	Evaluation of axial DC offsets during scanning of a quadrupole ion trap for sensitivity improvements. Rapid Communications in Mass Spectrometry, 2001, 15, 679-684.	1.5	5
44	Double-resonance spectroscopy of the jet-cooled free base and Cu(ii) complex of protoporphyrin IX. Physical Chemistry Chemical Physics, 2010, 12, 14076.	2.8	5
45	Conductivity, Viscosity, Spectroscopic Properties of Organic Sulfonic Acid solutions in Ionic Liquids. ChemEngineering, 2019, 3, 81.	2.4	5
46	The spectroscopy of jet-cooled porphyrins: an insight into the vibronic structure of the Q band. Journal of Porphyrins and Phthalocyanines, 2010, 14, 314-323.	0.8	3
47	An activity transition from NADH dehydrogenase to NADH oxidase during protein denaturation. Biotechnology and Applied Biochemistry, 2018, 65, 286-293.	3.1	2
48	Effects of Ionic Liquids on Laccase from Trametes versicolor. Biophysica, 2021, 1, 429-444.	1.4	2
49	A Rapid Solar Reduction Method to TiO2/MoO2/Graphene Nanocomposites for Photocatalytic Water Splitting. Materials Research Society Symposia Proceedings, 2015, 1738, 60.	0.1	0
50	Sequence-specific destabilization of azurin by tetramethylguanidinium-dipeptide ionic liquids. Biochemistry and Biophysics Reports, 2022, 30, 101242.	1.3	0