William W Hay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663496/publications.pdf

Version: 2024-02-01

82 papers 3,434 citations

32 h-index 56 g-index

88 all docs 88 docs citations

88 times ranked 2869 citing authors

#	Article	IF	Citations
1	The importance of using local populations to assess fetal and preterm infant growth. Jornal De Pediatria, 2021, 97, 582-584.	0.9	1
2	Effects of chronic hyperinsulinemia on metabolic pathways and insulin signaling in the fetal liver. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E721-E733.	1.8	11
3	A Chronic Fetal Leucine Infusion Potentiates Fetal Insulin Secretion and Increases Pancreatic Islet Size, Vascularity, and \hat{l}^2 Cells in Late-Gestation Sheep. Journal of Nutrition, 2020, 150, 2061-2069.	1.3	9
4	Postnatal \hat{I}^2 2 adrenergic treatment improves insulin sensitivity in lambs with IUGR but not persistent defects in pancreatic islets or skeletal muscle. Journal of Physiology, 2019, 597, 5835-5858.	1.3	20
5	Skeletal muscle amino acid uptake is lower and alanine production is greater in late gestation intrauterine growth-restricted fetal sheep hindlimb. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R615-R629.	0.9	22
6	Alert Newborn Infants Are Ready to Feed and Raise Their Glucose Concentration. Neonatology, 2019, 115, 239-241.	0.9	1
7	Prolonged Prepregnant Maternal High-Fat Feeding Reduces Fetal and Neonatal Blood Glucose Concentrations by Enhancing Fetal I ² -cell Development in C57BL/6 Mice. Diabetes, 2019, 68, db181308.	0.3	12
8	Sustained hypoxemia in late gestation potentiates hepatic gluconeogenic gene expression but does not activate glucose production in the ovine fetus. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1-E10.	1.8	16
9	Differential effects of intrauterine growth restriction and a hypersinsulinemic-isoglycemic clamp on metabolic pathways and insulin action in the fetal liver. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R427-R440.	0.9	23
10	High-fat feeding reprograms maternal energy metabolism and induces long-term postpartum obesity in mice. International Journal of Obesity, 2019, 43, 1747-1758.	1.6	13
11	Breastfeeding newborns and infants: some new food for thought about an old practice. American Journal of Clinical Nutrition, 2018, 107, 499-500.	2.2	O
12	The Fragile State of the National Institutes of Health Pediatric Research Portfolio, 1992-2015. JAMA Pediatrics, 2018, 172, 287.	3.3	20
13	Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growthâ€restricted fetal sheep. Journal of Physiology, 2018, 596, 67-82.	1.3	50
14	Regulatory effects of brown adipose tissue thermogenesis on maternal metabolic adaptation, placental efficiency, and fetal growth in mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1224-E1231.	1.8	10
15	Opportunities for life course research through the integration of data across Clinical and Translational Research Institutes. Journal of Clinical and Translational Science, 2018, 2, 156-162.	0.3	4
16	Nutritional Support Strategies for the Preterm Infant in the Neonatal Intensive Care Unit. Pediatric Gastroenterology, Hepatology and Nutrition, 2018, 21, 234.	0.4	43
17	Prolonged amino acid infusion into intrauterine growth-restricted fetal sheep increases leucine oxidation rates. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1143-E1153.	1.8	17
18	The uncertain fate of the National Institutes of Health (NIH) pediatric research portfolio. Pediatric Research, 2018, 84, 328-332.	1.1	19

#	Article	IF	Citations
19	A cautionary response to SMFM statement: pharmacologicalÂtreatment of gestational diabetes. American Journal of Obstetrics and Gynecology, 2018, 219, 367.e1-367.e7.	0.7	62
20	The Postnatal Glucose Concentration Nadir Is Not Abnormal and Does Not Need to Be Treated. Neonatology, 2018, 114, 163-163.	0.9	5
21	Myoblast replication is reduced in the IUGR fetus despite maintained proliferative capacity in vitro. Journal of Endocrinology, 2017, 232, 475-491.	1.2	32
22	Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice. Diabetes, 2017, 66, 1126-1135.	0.3	58
23	Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R654-R663.	0.9	14
24	Enhanced insulin secretion and insulin sensitivity in young lambs with placental insufficiency-induced intrauterine growth restriction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R101-R109.	0.9	40
25	Chronic anemic hypoxemia attenuates glucose-stimulated insulin secretion in fetal sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R492-R500.	0.9	29
26	Challenges in nourishing the intrauterine growthâ€restricted foetus – Lessons learned from studies in the intrauterine growthâ€restricted foetal sheep. Acta Paediatrica, International Journal of Paediatrics, 2016, 105, 881-889.	0.7	22
27	Chronic anemic hypoxemia increases plasma glucagon and hepatic <i>PCK1</i> mRNA in late-gestation fetal sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R200-R208.	0.9	18
28	New approaches to management of neonatal hypoglycemia. Maternal Health, Neonatology and Perinatology, $2016,2,3.$	1.0	43
29	Chronically Increased Amino Acids Improve Insulin Secretion, Pancreatic Vascularity, and Islet Size in Growth-Restricted Fetal Sheep. Endocrinology, 2016, 157, 3788-3799.	1.4	29
30	Knockout maternal adiponectin increases fetal growth in mice: potential role for trophoblast IGFBP-1. Diabetologia, 2016, 59, 2417-2425.	2.9	34
31	Modern Management of Preterm Infants Prevents Adverse Developmental Outcomes From Hypoglycemia. Pediatrics, 2016, 138, e20162881-e20162881.	1.0	1
32	Impact of placental insufficiency on fetal skeletal muscle growth. Molecular and Cellular Endocrinology, 2016, 435, 69-77.	1.6	61
33	Comparing apples with apples: it is time for standardized reporting of neonatal nutrition and growth studies. Pediatric Research, 2016, 79, 810-820.	1.1	105
34	Increased fetal myocardial sensitivity to insulin-stimulated glucose metabolism during ovine fetal growth restriction. Experimental Biology and Medicine, 2016, 241, 839-847.	1.1	12
35	Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production. Molecular and Cellular Endocrinology, 2016, 435, 61-68.	1.6	26
36	Challenges of infant nutrition research: a commentary. Nutrition Journal, 2015, 15, 42.	1.5	11

#	Article	IF	Citations
37	Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R920-R928.	0.9	72
38	Coordinated changes in hepatic amino acid metabolism and endocrine signals support hepatic glucose production during fetal hypoglycemia. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E306-E314.	1.8	25
39	Placental Insufficiency Decreases Pancreatic Vascularity and Disrupts Hepatocyte Growth Factor Signaling in the Pancreatic Islet Endothelial Cell in Fetal Sheep. Diabetes, 2015, 64, 555-564.	0.3	39
40	Maternal High-Fat Feeding Increases Placental Lipoprotein Lipase Activity by Reducing SIRT1 Expression in Mice. Diabetes, 2015, 64, 3111-3120.	0.3	57
41	Increased Adrenergic Signaling Is Responsible for Decreased Glucose-Stimulated Insulin Secretion in the Chronically Hyperinsulinemic Ovine Fetus. Endocrinology, 2015, 156, 367-376.	1.4	20
42	High-Protein Formulas. Clinics in Perinatology, 2014, 41, 383-403.	0.8	14
43	Energy Requirements, Protein-Energy Metabolism and Balance, and Carbohydrates in Preterm Infants. World Review of Nutrition and Dietetics, 2014, 110, 64-81.	0.1	31
44	Aggressive Nutrition of the Preterm Infant. Current Pediatrics Reports, 2013, 1, 229-239.	1.7	97
45	Reductions in insulin concentrations and \hat{l}^2 -cell mass precede growth restriction in sheep fetuses with placental insufficiency. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E516-E523.	1.8	57
46	Increased Hepatic Glucose Production in Fetal Sheep With Intrauterine Growth Restriction Is Not Suppressed by Insulin. Diabetes, 2013, 62, 65-73.	0.3	77
47	Care of the Infant of the Diabetic Mother. Current Diabetes Reports, 2012, 12, 4-15.	1.7	98
48	Child Health Research Funding and Policy: Imperatives and Investments for a Healthier World. Pediatrics, 2010, 125, 1259-1265.	1.0	35
49	Neonatal Hyperglycemia. NeoReviews, 2010, 11, e632-e639.	0.4	34
50	Protein for Preterm Infants: How Much is Needed? How Much is Enough? How Much is Too Much?. Pediatrics and Neonatology, 2010, 51, 198-207.	0.3	96
51	American Pediatric Society Presidential Address 2008: Research in Early Life - Benefit and Promise. Pediatric Research, 2009, 65, 117-122.	1.1	24
52	Intrauterine Growth Restriction Increases Fetal Hepatic Gluconeogenic Capacity and Reduces Messenger Ribonucleic Acid Translation Initiation and Nutrient Sensing in Fetal Liver and Skeletal Muscle. Endocrinology, 2009, 150, 3021-3030.	1.4	140
53	Knowledge Gaps and Research Needs for Understanding and Treating Neonatal Hypoglycemia: Workshop Report from Eunice Kennedy Shriver National Institute of Child Health and Human Development. Journal of Pediatrics, 2009, 155, 612-617.	0.9	228
54	Strategies for Feeding the Preterm Infant. Neonatology, 2008, 94, 245-254.	0.9	195

#	Article	IF	CITATIONS
55	Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1716-E1725.	1.8	155
56	Nutrient Supplies for Optimal Health in Preterm Infants. Journal of Pediatric Gastroenterology and Nutrition, 2007, 45, S163-9.	0.9	13
57	Recent observations on the regulation of fetal metabolism by glucose. Journal of Physiology, 2006, 572, 17-24.	1.3	94
58	Attenuated Insulin Release and Storage in Fetal Sheep Pancreatic Islets with Intrauterine Growth Restriction. Endocrinology, 2006, 147, 1488-1497.	1.4	185
59	Nutritional requirements of the very preterm infant. Acta Paediatrica, International Journal of Paediatrics, 2005, 94, 37-46.	0.7	6
60	Intravenous nutrition of the very preterm neonate. Acta Paediatrica, International Journal of Paediatrics, 2005, 94, 47-56.	0.7	6
61	Reliability of Conventional and New Pulse Oximetry in Neonatal Patients. Journal of Perinatology, 2002, 22, 360-366.	0.9	148
62	Fetal hyperinsulinemia increases farnesylation of p21 Ras in fetal tissues. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E217-E223.	1.8	23
63	Pulse Oximetry: As Good as it Gets?. Journal of Perinatology, 2000, 20, 181-183.	0.9	8
64	Regulation of uterine and umbilical amino acid uptakes by maternal amino acid concentrations. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R849-R859.	0.9	4
65	Effect of glucose supply on ovine uteroplacental glucose metabolism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R947-R958.	0.9	17
66	To the Readers from the Editors of NeoReviews. Pediatrics in Review, 1999, 20, e3-e3.	0.2	0
67	A GENERALIZED MICHAELIS-MENTEN RESPONSE SURFACE. , 1996, 15, 2107-2119.		9
68	Identification of a Unique Form of Protein C in the Ovine Fetus: Developmentally Linked Transition to the Adult Form. Pediatric Research, 1995, 37, 365-372.	1.1	21
69	Hyperglycemia-Induced Hyperinsulinemia Decreases Maternal and Fetal Plasma Protein C Concentration during Ovine Gestation. Pediatric Research, 1994, 36, 293-299.	1.1	8
70	Development of primary culture of ovine fetal hepatocytes for studies of amino acid metabolism and insulinlike growth factors. In Vitro Cellular and Developmental Biology - Animal, 1993, 29, 592-596.	0.7	12
71	Induction of Cytosolic Phosphoenolpyruvate Carboxykinase in the Ovine Fetal Liver by Chronic Fetal Hypoglycemia and Hypoinsulinemia. Pediatric Research, 1993, 33, 493-496.	1.1	37
72	In vivo measurements of placental transport and metabolism. Proceedings of the Nutrition Society, 1991, 50, 355-362.	0.4	8

#	Article	IF	CITATIONS
73	Energy and substrate requirements of the placenta and fetus. Proceedings of the Nutrition Society, 1991, 50, 321-336.	0.4	65
74	Regulation of Placental Glucose Transfer and Consumption by Fetal Glucose Production. Pediatric Research, 1989, 25, 429-434.	1.1	53
75	THE EFFECTS OF PANCREATECTOMY ON THE RATES OF GLUCOSE UTILIZATION, OXIDATION AND PRODUCTION IN THE SHEEP FETUS. Quarterly Journal of Experimental Physiology (Cambridge, England), 1988, 73, 973-984.	1.0	60
76	FRUCTOSE DISPOSAL AND OXIDATION RATES IN THE OVINE FETUS. Quarterly Journal of Experimental Physiology (Cambridge, England), 1987, 72, 617-625.	1.0	55
77	THE EFFECT OF HYPERINSULINAEMIA ON GLUCOSE UTILIZATION AND OXIDATION AND ON OXYGEN CONSUMPTION IN THE FETAL LAMB. Quarterly Journal of Experimental Physiology (Cambridge, England), 1986, 71, 689-698.	1.0	44
78	Some Aspects of Maternal Metabolism Throughout Pregnancy in the Conscious Rabbit. Pediatric Research, 1984, 18, 854-859.	1.1	22
79	Glucose Turnover Rates in Chronically Catheterized Non-Pregnant and Pregnant Rabbits. Pediatric Research, 1984, 18, 276-280.	1.1	8
80	Heparin Clearance in the Newborn. Pediatric Research, 1981, 15, 1015-1018.	1.1	117
81	Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia., 0,, 32-46.		2
82	Effect of Low versus High Intravenous Amino Acid Intake on Very Low Birth Weight Infants in the Early Neonatal Period. , 0, .		17