Maria Antonietta De Luca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663327/publications.pdf

Version: 2024-02-01

55 papers

2,787 citations

218592 26 h-index 51 g-index

59 all docs 59 docs citations

59 times ranked

3691 citing authors

#	Article	IF	CITATIONS
1	Editorial of special issue – Synthetic psychoactive substances and neurological diseases: Toxic and therapeutic effects. Experimental Neurology, 2022, 347, 113921.	2.0	1
2	Needle-Free Jet Injectors and Nanosuspensions: Exploring the Potential of an Unexpected Pair. Pharmaceutics, 2022, 14, 1085.	2.0	2
3	Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Molecular Psychiatry, 2022, 27, 4201-4217.	4.1	2
4	The potential role of oxytocin in addiction: What is the target process?. Current Opinion in Pharmacology, 2021, 58, 8-20.	1.7	8
5	Repeated exposure to JWHâ€018 induces adaptive changes in the mesolimbic and mesocortical dopaminergic pathways, glial cells alterations, and behavioural correlates. British Journal of Pharmacology, 2021, 178, 3476-3497.	2.7	12
6	Human Neuronal Cell Lines as An In Vitro Toxicological Tool for the Evaluation of Novel Psychoactive Substances. International Journal of Molecular Sciences, 2021, 22, 6785.	1.8	8
7	New insights into methoxetamine mechanisms of action: Focus on serotonergic 5-HT2 receptors in pharmacological and behavioral effects in the rat. Experimental Neurology, 2021, 345, 113836.	2.0	4
8	Neurochemical and Behavioral Characterization after Acute and Repeated Exposure to Novel Synthetic Cannabinoid Agonist 5-MDMB-PICA. Brain Sciences, 2020, 10, 1011.	1.1	10
9	The Role of Dopamine in the Stimulant Characteristics of Novel Psychoactive Substances (NPS)â€"Neurobiological and Computational Assessment Using the Case of Desoxypipradrol (2-DPMP). Frontiers in Pharmacology, 2020, 11, 806.	1.6	6
10	Neurophysiological and Neurochemical Effects of the Putative Cognitive Enhancer (S)-CE-123 on Mesocorticolimbic Dopamine System. Biomolecules, 2020, 10, 779.	1.8	15
11	Neuronal and peripheral damages induced by synthetic psychoactive substances: an update of recent findings from human and animal studies. Neural Regeneration Research, 2020, 15, 802.	1.6	30
12	The Novel Atypical Dopamine Uptake Inhibitor (S)-CE-123 Partially Reverses the Effort-Related Effects of the Dopamine Depleting Agent Tetrabenazine and Increases Progressive Ratio Responding. Frontiers in Pharmacology, 2019, 10, 682.	1.6	35
13	Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Frontiers in Pharmacology, 2019, 10, 1406.	1.6	25
14	Pharmacological and Behavioral Effects of the Synthetic Cannabinoid AKB48 in Rats. Frontiers in Neuroscience, 2019, 13, 1163.	1.4	31
15	Dopamine Restores Limbic Memory Loss, Dendritic Spine Structure, and NMDAR-Dependent LTD in the Nucleus Accumbens of Alcohol-Withdrawn Rats. Journal of Neuroscience, 2019, 39, 929-943.	1.7	24
16	The novel psychoactive substance methoxetamine induces persistent behavioral abnormalities and neurotoxicity in rats. Neuropharmacology, 2019, 144, 219-232.	2.0	19
17	Editorial: Deconstructing the Influence of Genetic and Age Vulnerability to Psychiatric Disorders. Frontiers in Psychiatry, 2019, 10, 13.	1.3	0
18	Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits. Neuron, 2018, 98, 801-816.e7.	3.8	40

#	Article	IF	CITATIONS
19	Therapeutic Use of Synthetic Cannabinoids: Still an Open Issue?. Clinical Therapeutics, 2018, 40, 1457-1466.	1.1	39
20	Loren Parsons' contribution to addiction neurobiology. Addiction Biology, 2018, 23, 1207-1222.	1.4	6
21	Taste novelty and dopamine. , 2018, , 147-165.		O
22	Sales and Advertising Channels of New Psychoactive Substances (NPS): Internet, Social Networks, and Smartphone Apps. Brain Sciences, 2018, 8, 123.	1.1	50
23	Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nature Communications, 2018, 9, 2265.	5.8	38
24	Brain-wide Mapping of Endogenous Serotonergic Transmission via Chemogenetic fMRI. Cell Reports, 2017, 21, 910-918.	2.9	70
25	4,4′â€Dimethylaminorex ("4,4′â€DMARâ€) "Serotoniâ€) misuse: A Webâ€based study. Human Psycl 2017, 32, e2575.	hopharma	icology,
26	Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice. Frontiers in Psychiatry, 2017, 8, 130.	1.3	36
27	Is there a Teratogenicity Risk Associated with Cannabis and Synthetic Cannabimimetics' ( Spice') Intak CNS and Neurological Disorders - Drug Targets, 2017, 16, 585-591.	e? 0.8	11
28	Cannabis; Epidemiological, Neurobiological and Psychopathological Issues: An Update. CNS and Neurological Disorders - Drug Targets, 2017, 16, 598-609.	0.8	25
29	Neuropharmacology of New Psychoactive Substances (NPS): Focus on the Rewarding and Reinforcing Properties of Cannabimimetics and Amphetamine-Like Stimulants. Frontiers in Neuroscience, 2016, 10, 153.	1.4	148
30	Genetic Disruption of Arc/Arg3.1 in Mice Causes Alterations in Dopamine and Neurobehavioral Phenotypes Related to Schizophrenia. Cell Reports, 2016, 16, 2116-2128.	2.9	89
31	Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on "tetradâ€; sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology, 2016, 233, 3685-3709.	1.5	63
32	Effect of JWH-250, JWH-073 and their interaction on "tetradâ€; sensorimotor, neurological and neurochemical responses in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67, 31-50.	2.5	62
33	Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135. Neuropharmacology, 2016, 105, 630-638.	2.0	67
34	Lactoferrin- and antitransferrin-modified liposomes for brain targeting of the NK3 receptor agonist senktide: Preparation and in vivo evaluation. International Journal of Pharmaceutics, 2015, 479, 129-137.	2.6	44
35	Cannabinoids and drug addiction. , 2015, , 289-313.		1
36	PPARÎ ³ Activation Attenuates Opioid Consumption and Modulates Mesolimbic Dopamine Transmission. Neuropsychopharmacology, 2015, 40, 927-937.	2.8	67

#	Article	IF	Citations
37	Stimulation of inÂvivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology, 2015, 99, 705-714.	2.0	65
38	A systematic microdialysis study of dopamine transmission in the accumbens shell/core and prefrontal cortex after acute antipsychotics. Psychopharmacology, 2015, 232, 1427-1440.	1.5	28
39	Habituation of the responsiveness of mesolimbic and mesocortical dopamine transmission to taste stimuli. Frontiers in Integrative Neuroscience, 2014, 8, 21.	1.0	17
40	Endocannabinoid 2-Arachidonoylglycerol Self-Administration by Sprague-Dawley Rats and Stimulation of in vivo Dopamine Transmission in the Nucleus Accumbens Shell. Frontiers in Psychiatry, 2014, 5, 140.	1.3	36
41	Elevation of striatal urate in experimental models of Parkinson's disease: a compensatory mechanism triggered by dopaminergic nigrostriatal degeneration?. Journal of Neurochemistry, 2014, 131, 284-289.	2.1	10
42	Evidence for a role of a dopamine/5-HT6 receptor interaction in cocaine reinforcement. Neuropharmacology, 2013, 65, 58-64.	2.0	23
43	Lesion of medial prefrontal dopamine terminals abolishes habituation of accumbens shell dopamine responsiveness to taste stimuli. European Journal of Neuroscience, 2013, 37, 613-622.	1.2	19
44	Late-onset Parkinsonism in NFÂB/c-Rel-deficient mice. Brain, 2012, 135, 2750-2765.	3.7	66
45	Cannabinoid facilitation of behavioral and biochemical hedonic taste responses. Neuropharmacology, 2012, 63, 161-168.	2.0	78
46	Chapter 14. Caffeine and the Brain: An Overview. Food and Nutritional Components in Focus, 2012, , 247-267.	0.1	2
47	Metronidazole prodrugs: Synthesis, physicochemical properties, stability, and exÂvivo release studies. European Journal of Medicinal Chemistry, 2011, 46, 4142-4150.	2.6	25
48	Influence of morphine sensitization on the responsiveness of mesolimbic and mesocortical dopamine transmission to appetitive and aversive gustatory stimuli. Psychopharmacology, 2011, 216, 345-353.	1.5	20
49	Role of dopamine D ₁ receptors in caffeineâ€mediated ERK phosphorylation in the rat brain. Synapse, 2010, 64, 341-349.	0.6	20
50	LC–MS–MS Determination of Rotenone, Deguelin, and Rotenolone in Human Serum. Chromatographia, 2008, 68, 739-745.	0.7	20
51	Caffeine and accumbens shell dopamine. Journal of Neurochemistry, 2007, 103, 070727014922001-???.	2.1	46
52	Differential impact of pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex. Psychopharmacology, 2007, 191, 689-703.	1.5	66
53	Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology, 2004, 47, 227-241.	2.0	777
54	Differential adaptive properties of accumbens shell dopamine responses to ethanol as a drug and as a motivational stimulus. European Journal of Neuroscience, 2003, 17, 1465-1472.	1.2	54

#	Article	IF	CITATIONS
55	Differential Expression of Motivational Stimulus Properties by Dopamine in Nucleus Accumbens Shell versus Core and Prefrontal Cortex. Journal of Neuroscience, 2002, 22, 4709-4719.	1.7	277