Peter C Harley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 1995, 100, 8873.	3.3	3,610
2	lsoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. Journal of Geophysical Research, 1993, 98, 12609-12617.	3.3	1,432
3	Theoretical Considerations when Estimating the Mesophyll Conductance to CO ₂ Flux by Analysis of the Response of Photosynthesis to CO ₂ . Plant Physiology, 1992, 98, 1429-1436.	2.3	799
4	Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmospheric Environment, 2000, 34, 2205-2230.	1.9	591
5	Estimation of Mesophyll Conductance to CO ₂ Flux by Three Different Methods. Plant Physiology, 1992, 98, 1437-1443.	2.3	371
6	An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthesis Research, 1991, 27, 169-178.	1.6	311
7	Ecological and evolutionary aspects of isoprene emission from plants. Oecologia, 1999, 118, 109-123.	0.9	214
8	lsoprene emission estimates and uncertainties for the central African EXPRESSO study domain. Journal of Geophysical Research, 1999, 104, 30625-30639.	3.3	207
9	Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere. Journal of Geophysical Research, 1998, 103, 25479-25486.	3.3	194
10	Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 2005, 146, 130-147.	0.9	169
11	Sesquiterpene Emissions from Pine Trees â~ Identifications, Emission Rates and Flux Estimates for the Contiguous United States. Environmental Science & Technology, 2007, 41, 1545-1553.	4.6	159
12	lsoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. Journal of Geophysical Research, 1996, 101, 18555-18567.	3.3	154
13	Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition. Plant, Cell and Environment, 2014, 37, 1790-1809.	2.8	107
14	Isoprene emission capacity for US tree species. Atmospheric Environment, 2001, 35, 3341-3352.	1.9	101
15	Variation in potential for isoprene emissions among Neotropical forest sites. Global Change Biology, 2004, 10, 630-650.	4.2	96
16	Ecosystemâ€scale volatile organic compound fluxes duringÂan extreme drought in a broadleaf temperate forestÂof the Missouri Ozarks (central <scp>USA</scp>). Global Change Biology, 2015, 21, 3657-3674.	4.2	76
17	Flux estimates and OH reaction potential of reactive biogenic volatile organic compounds (BVOCs) from a mixed northern hardwood forest. Atmospheric Environment, 2007, 41, 5479-5495.	1.9	72
18	Global Organic Emissions from Vegetation. Advances in Global Change Research, 2004, , 115-170.	1.6	65

PETER C HARLEY

#	Article	IF	CITATIONS
19	Gas Phase Measurements of Pyruvic Acid and Its Volatile Metabolites. Environmental Science & Technology, 2010, 44, 2454-2460.	4.6	63
20	Ozarks Isoprene Experiment (OZIE): Measurements and modeling of the "isoprene volcano― Journal of Geophysical Research, 2005, 110, .	3.3	62
21	Effects of growth under elevated UV-B on photosynthesis and isoprene emission in Quercus gambelii and Mucuna pruriens. Global Change Biology, 1996, 2, 149-154.	4.2	58
22	Evaluation of forest canopy models for estimating isoprene emissions. Journal of Geophysical Research, 1996, 101, 22787-22797.	3.3	57
23	Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results. Atmospheric Chemistry and Physics, 2013, 13, 11935-11947.	1.9	49
24	Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance. Oecologia, 2014, 176, 35-55.	0.9	46
25	Micrometeorological and leaf-level measurements of isoprene emissions from a southern African savanna. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	45
26	Effects of light and temperature on isoprene emission at different leaf developmental stages of eschweilera coriacea in central Amazon. Acta Amazonica, 2014, 44, 9-18.	0.3	36
27	Nutritional and developmental influences on components of rice crop light use efficiency. Agricultural and Forest Meteorology, 2016, 223, 1-16.	1.9	25
28	Leaf enclosure measurements for determining volatile organic compound emission capacity from Cannabis spp Atmospheric Environment, 2019, 199, 80-87.	1.9	19
29	Leaf level emission measurement of sesquiterpenes and oxygenated sesquiterpenes from desert shrubs and temperate forest trees using a liquid extraction technique. Geochemical Journal, 2009, 43, 179-189.	0.5	18
30	Reduction of isoprene emissions from live oak (Quercus fusiformis) with oak wilt. Tree Physiology, 2000, 20, 1199-1203.	1.4	16
31	Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. Chemosphere, 2016, 146, 8-21.	4.2	16