Beverley Greenwood-Van Meerveld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663154/publications.pdf

Version: 2024-02-01

125 papers 4,994 citations

38 h-index 102304 66 g-index

126 all docs

126 docs citations

126 times ranked 5108 citing authors

#	Article	IF	Citations
1	An enriched environment reduces chronic stress-induced visceral pain through modulating microglial activity in the central nucleus of the amygdala. American Journal of Physiology - Renal Physiology, 2022, 322, G223-G233.	1.6	5
2	Chronic stress increases DNA methylation of the GR promoter in the central nucleus of the amygdala of female rats. Neurogastroenterology and Motility, 2022, 34, e14377.	1.6	6
3	Abdominal and Pelvic Pain: Current Challenges and Future Opportunities. Frontiers in Pain Research, 2021, 2, 634804.	0.9	5
4	Amygdala microglia modify neuronal plasticity via complement C1q/C3-CR3 signaling and contribute to visceral pain in a rat model. American Journal of Physiology - Renal Physiology, 2021, 320, G1081-G1092.	1.6	15
5	Stress-induced visceral pain in female rats is associated with epigenetic remodeling in the central nucleus of the amygdala. Neurobiology of Stress, 2021, 15, 100386.	1.9	12
6	Environmental enrichment prevents stress-induced epigenetic changes in the expression of glucocorticoid receptor and corticotrophin releasing hormone in the central nucleus of the amygdala to inhibit visceral hypersensitivity. Experimental Neurology, 2021, 345, 113841.	2.0	10
7	Epigenetics of pain management. , 2021, , 817-837.		O
8	Peripheral Guanylate Cyclaseâ€C modulation of corticolimbic activation and corticotropinâ€releasing factor signaling in a rat model of stressâ€induced colonic hypersensitivity. Neurogastroenterology and Motility, 2021, 33, e14076.	1.6	4
9	A Monoclonal Anti–Calcitonin Gene-Related Peptide Antibody Decreases Stress-Induced Colonic Hypersensitivity. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 270-279.	1.3	11
10	Sex differences in the epigenetic regulation of chronic visceral pain following unpredictable early life stress. Neurogastroenterology and Motility, 2020, 32, e13751.	1.6	19
11	The microbiota-gut-brain axis: An emerging role for the epigenome. Experimental Biology and Medicine, 2020, 245, 138-145.	1.1	31
12	Critical evaluation of animal models of visceral pain for therapeutics development: A focus on irritable bowel syndrome. Neurogastroenterology and Motility, 2020, 32, e13776.	1.6	25
13	Enlightening the frontiers of neurogastroenterology through optogenetics. American Journal of Physiology - Renal Physiology, 2020, 319, G391-G399.	1.6	3
14	Attenuation of Visceral and Somatic Nociception by Ghrelin Mimetics. Journal of Experimental Pharmacology, 2020, Volume 12, 267-274.	1.5	1
15	Inhibition of Microglial Activation in the Amygdala Reverses Stress-Induced Abdominal Pain in the Male Rat. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 527-543.	2.3	22
16	Environmental enrichment prevents chronic stressâ€induced brainâ€gut axis dysfunction through a GRâ€mediated mechanism in the central nucleus of the amygdala. Neurogastroenterology and Motility, 2020, 32, e13826.	1.6	8
17	Importance of Non-pharmacological Approaches for Treating Irritable Bowel Syndrome: Mechanisms and Clinical Relevance. Frontiers in Pain Research, 2020, 1, 609292.	0.9	2
18	In vivo and ex vivo assessment of bladder hyper-permeability and using molecular targeted magnetic resonance imaging to detect claudin-2 in a mouse model for interstitial cystitis. PLoS ONE, 2020, 15, e0239282.	1.1	4

#	Article	IF	Citations
19	Title is missing!. , 2020, 15, e0239282.		O
20	Title is missing!. , 2020, 15, e0239282.		0
21	Title is missing!. , 2020, 15, e0239282.		0
22	Title is missing!. , 2020, 15, e0239282.		0
23	Title is missing!. , 2020, 15, e0239282.		O
24	Title is missing!. , 2020, 15, e0239282.		0
25	Title is missing!. , 2020, 15, e0239282.		O
26	Title is missing!. , 2020, 15, e0239282.		0
27	Microbiota, the brain and epigenetics. , 2019, , 423-443.		O
28	Role of estrogen and stress on the brain-gut axis. American Journal of Physiology - Renal Physiology, 2019, 317, G203-G209.	1.6	34
29	Targeting epigenetic mechanisms for chronic visceral pain: A valid approach for the development of novel therapeutics. Neurogastroenterology and Motility, 2019, 31, e13500.	1.6	16
30	A Comparison of the Central versus Peripheral Gastrointestinal Prokinetic Activity of Two Novel Ghrelin Mimetics. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 116-124.	1.3	7
31	Enteric RET inhibition attenuates gastrointestinal secretion and motility via cholinergic signaling in rat colonic mucosal preparations. Neurogastroenterology and Motility, 2019, 31, e13479.	1.6	11
32	Exploring the Potential of RET Kinase Inhibition for Irritable Bowel Syndrome: A Preclinical Investigation in Rodent Models of Colonic Hypersensitivity. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 299-307.	1.3	11
33	Preclinical Animal Studies of Intravesical Recombinant Human Proteoglycan 4 as a Novel Potential Therapy for Diseases Resulting From Increased Bladder Permeability. Urology, 2018, 116, 230.e1-230.e7.	0.5	10
34	Visceral hypersensitivity induced by optogenetic activation of the amygdala in conscious rats. American Journal of Physiology - Renal Physiology, 2018, 314, G448-G457.	1.6	7
35	Stereotaxic Exposure of the Central Nucleus of the Amygdala to Corticosterone Increases Colonic Permeability and Reduces Nerve-Mediated Active Ion Transport in Rats. Frontiers in Neuroscience, 2018, 12, 543.	1.4	4
36	Linaclotide Attenuates Visceral Organ Crosstalk: Role of Guanylate Cyclase-C Activation in Reversing Bladder-Colon Cross-Sensitization. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 274-281.	1.3	11

#	Article	IF	Citations
37	Linaclotide inhibits colonic and urinary bladder hypersensitivity in adult female rats following unpredictable neonatal stress. Neurogastroenterology and Motility, 2018, 30, e13375.	1.6	18
38	Mechanisms of Stress-induced Visceral Pain. Journal of Neurogastroenterology and Motility, 2018, 24, 7-18.	0.8	74
39	Environmental Enrichment Reverses Chronic Stressâ€Induced Brainâ€Gut Axis Dysfunction. FASEB Journal, 2018, 32, 921.1.	0.2	O
40	Gastrointestinal Physiology and Function. Handbook of Experimental Pharmacology, 2017, 239, 1-16.	0.9	120
41	Critical Evaluation of Animal Models of Gastrointestinal Disorders. Handbook of Experimental Pharmacology, 2017, 239, 289-317.	0.9	18
42	Psychological stressâ€induced colonic barrier dysfunction: Role of immuneâ€mediated mechanisms. Neurogastroenterology and Motility, 2017, 29, e13043.	1.6	22
43	Amygdala-mediated mechanisms regulate visceral hypersensitivity in adult females following early life stress: importance of the glucocorticoid receptor and corticotropin-releasing factor. Pain, 2017, 158, 296-305.	2.0	41
44	Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Frontiers in Systems Neuroscience, 2017, 11, 86.	1.2	61
45	Epigenetics of Pain Management. , 2016, , 827-841.		2
46	Neurobiology of early life stress and visceral pain: translational relevance from animal models to patient care. Neurogastroenterology and Motility, 2016, 28, 1290-1305.	1.6	20
47	In the absence of overt urothelial damage, chondroitinase ABC digestion of the GAG layer increases bladder permeability in ovariectomized female rats. American Journal of Physiology - Renal Physiology, 2016, 310, F1074-F1080.	1.3	12
48	Sex-related differences in pain behaviors following three early life stress paradigms. Biology of Sex Differences, 2016, 7, 29.	1.8	48
49	Fundamentals of Neurogastroenterology: Basic Science. Gastroenterology, 2016, 150, 1280-1291.	0.6	161
50	Stress and the Microbiota–Gut–Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neuroscience and Therapeutics, 2016, 22, 102-117.	1.9	262
51	Sex differences in stressâ€induced visceral hypersensitivity following early life adversity: a two hit model. Neurogastroenterology and Motility, 2016, 28, 1876-1889.	1.6	31
52	Enteroendocrine cells: a review of their role in brain–gut communication. Neurogastroenterology and Motility, 2016, 28, 620-630.	1.6	241
53	Sexually dimorphic effects of early life stress in rat pups on urinary bladder detrusor muscle contractility in adulthood. Biology of Sex Differences, 2016, 7, 8.	1.8	5
54	Mechanisms of Stressâ€Induced Visceral Pain: Implications in Irritable Bowel Syndrome. Journal of Neuroendocrinology, 2016, 28, .	1.2	25

#	Article	IF	Citations
55	The Pharmacology of Visceral Pain. Advances in Pharmacology, 2016, 75, 273-301.	1.2	27
56	Targeting Epigenetic Mechanisms for Chronic Pain: A Valid Approach for the Development of Novel Therapeutics. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 84-93.	1.3	36
57	Stress and the Microbiota–Gut–Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. , 2016, 22, 102.		1
58	Knockdown of corticotropin-releasing factor in the central amygdala reverses persistent viscerosomatic hyperalgesia. Translational Psychiatry, 2015, 5, e517-e517.	2.4	46
59	Knockdown of steroid receptors in the central nucleus of the amygdala induces heightened pain behaviors in the rat. Neuropharmacology, 2015, 93, 116-123.	2.0	40
60	Gender specific effects of neonatal limited nesting on viscerosomatic sensitivity and anxietyâ€like behavior in adult rats. Neurogastroenterology and Motility, 2015, 27, 72-81.	1.6	52
61	Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. American Journal of Physiology - Renal Physiology, 2015, 308, G885-G903.	1.6	68
62	Mechanisms of Visceral Organ Crosstalk: Importance of Alterations in Permeability in Rodent Models. Journal of Urology, 2015, 194, 804-811.	0.2	28
63	Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Molecular Psychiatry, 2015, 20, 1219-1231.	4.1	133
64	Synergistic Effect of 5-Hydroxytryptamine 3 and Neurokinin 1 Receptor Antagonism in Rodent Models of Somatic and Visceral Pain. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 146-152.	1.3	22
65	In a nonâ€human primate model, aging disrupts the neural control of intestinal smooth muscle contractility in a regionâ€specific manner. Neurogastroenterology and Motility, 2014, 26, 410-418.	1.6	18
66	Importance of CRF Receptor-Mediated Mechanisms of the Bed Nucleus of the Stria Terminalis in the Processing of Anxiety and Pain. Neuropsychopharmacology, 2014, 39, 2633-2645.	2.8	73
67	Stress-Induced Pain: A Target for the Development of Novel Therapeutics. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 327-335.	1.3	44
68	Early life stress induces bladder dysmotility in adult rats (1065.17). FASEB Journal, 2014, 28, 1065.17.	0.2	0
69	Genetic diversity contributes to abnormalities in pain behaviors between young and old rats. Age, 2013, 35, 1-10.	3.0	7
70	Sexually Dimorphic Effects of Unpredictable Early Life Adversity on Visceral Pain Behavior in a Rodent Model. Journal of Pain, 2013, 14, 270-280.	0.7	69
71	Early Life Adversity as a Risk Factor for Visceral Pain in Later Life: Importance of Sex Differences. Frontiers in Neuroscience, 2013, 7, 13.	1.4	36
72	Differential involvement of amygdala corticosteroid receptors in visceral hyperalgesia following acute or repeated stress. American Journal of Physiology - Renal Physiology, 2012, 302, G260-G266.	1.6	61

#	Article	IF	CITATIONS
73	The role of the anteriolateral bed nucleus of the stria terminalis in stress-induced nociception. American Journal of Physiology - Renal Physiology, 2012, 302, G1301-G1309.	1.6	23
74	Intestinal barrier function in health and gastrointestinal disease: Review Article. Neurogastroenterology and Motility, 2012, 24, 889-889.	1.6	3
7 5	Efficacy of ipamorelin, a ghrelin mimetic, on gastric dysmotility in a rodent model of postoperative ileus. Journal of Experimental Pharmacology, 2012, 4, 149.	1.5	5
76	Activation of Colonic Mucosal 5-HT4 Receptors Accelerates Propulsive Motility and Inhibits Visceral Hypersensitivity. Gastroenterology, 2012, 142, 844-854.e4.	0.6	224
77	Altered expression of glucocorticoid receptor and corticotropin-releasing factor in the central amygdala in response to elevated corticosterone. Behavioural Brain Research, 2012, 234, 380-385.	1.2	33
78	Lateralized amygdala activation: Importance in the regulation of anxiety and pain behavior. Physiology and Behavior, 2012, 105, 371-375.	1.0	26
79	Importance of stress receptorâ€mediated mechanisms in the amygdala on visceral pain perception in an intrinsically anxious rat. Neurogastroenterology and Motility, 2012, 24, 479-486.	1.6	47
80	Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology and Motility, 2012, 24, 503-512.	1.6	613
81	Chrelin as a target for gastrointestinal motility disorders. Peptides, 2011, 32, 2352-2356.	1.2	25
82	Effects of Bifidobacterium infantis 35624 on Post-Inflammatory Visceral Hypersensitivity in the Rat. Digestive Diseases and Sciences, 2011, 56, 3179-3186.	1.1	64
83	The Aging Colon: The Role of Enteric Neurodegeneration in Constipation. Current Gastroenterology Reports, 2010, 12, 507-512.	1.1	62
84	Brain Activation in Response to Visceral Stimulation in Rats with Amygdala Implants of Corticosterone: An fMRI Study. PLoS ONE, 2010, 5, e8573.	1.1	35
85	Divergent effects of amygdala glucocorticoid and mineralocorticoid receptors in the regulation of visceral and somatic pain. American Journal of Physiology - Renal Physiology, 2010, 298, G295-G303.	1.6	68
86	Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation. International Journal of Developmental Neuroscience, 2010, 28, 99-103.	0.7	17
87	Elevated corticosterone in the amygdala leads to persistant increases in anxiety-like behavior and pain sensitivity. Behavioural Brain Research, 2010, 214, 465-469.	1.2	61
88	Exposure of the amygdala to elevated levels of corticosterone alters colonic motility in response to acute psychological stress. Neuropharmacology, 2010, 58, 1161-1167.	2.0	33
89	Efficacy of repifermin (keratinocyte growth factor-2) against abnormalities in gastrointestinal mucosal transport in a murine model of colitis. Journal of Pharmacy and Pharmacology, 2010, 55, 67-75.	1.2	13
90	A novel TRPV1 receptor antagonist JNJ-17203212 attenuates colonic hypersensitivity in rats. Methods and Findings in Experimental and Clinical Pharmacology, 2010, 32, 557.	0.8	15

#	Article	IF	Citations
91	Neural Control of the Colon. , 2009, , 865-871.		O
92	Role of Anxiety in the Pathophysiology of Irritable Bowel Syndrome: Importance of the Amygdala. Frontiers in Neuroscience, 2009, 3, 47.	1.4	55
93	Effect of the ghrelin receptor agonist TZP-101 on colonic transit in a rat model of postoperative ileus. European Journal of Pharmacology, 2009, 604, 132-137.	1.7	35
94	Inhibition of endothelial cell adhesion molecule expression improves colonic hyperalgaesia. Neurogastroenterology and Motility, 2009, 21, 189-196.	1.6	5
95	Effect of spinal cord stimulation in a rodent model of postâ€operative ileus. Neurogastroenterology and Motility, 2009, 21, 672.	1.6	15
96	Increased colonic transit in rats produced by a combination of a cholinesterase inhibitor with a 5â∈HT ₄ receptor agonist. Neurogastroenterology and Motility, 2009, 21, 1197.	1.6	10
97	Effect of TZP-201, a novel motilin receptor antagonist, in the colon of the musk shrew (<i>Suncus) Tj ETQq1</i>	1 0.78431 1.2	. 4 rgBT /Overlock
98	Mineralocorticoid and glucocorticoid receptors in the amygdala regulate distinct responses to colorectal distension. Neuropharmacology, 2009, 56, 514-521.	2.0	15
99	Methylnaltrexone in the treatment of opioid-induced constipation. Clinical and Experimental Gastroenterology, 2008, 1, 49.	1.0	15
100	Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. American Journal of Physiology - Renal Physiology, 2007, 292, G1622-G1629.	1.6	98
101	Changes in urinary bladder smooth muscle function in response to colonic inflammation. American Journal of Physiology - Renal Physiology, 2007, 293, F1461-F1467.	1.3	37
102	Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behavioural Brain Research, 2007, 181, 163-167.	1.2	47
103	Emerging drugs for postoperative ileus. Expert Opinion on Emerging Drugs, 2007, 12, 619-626.	1.0	25
104	Corticotropin-releasing factor receptor 1-deficient mice show decreased anxiety and colonic sensitivity. Neurogastroenterology and Motility, 2007, 19, 754-760.	1.6	48
105	Long-term colonic hypersensitivity in adult rats induced by neonatal unpredictable vs predictable shock. Neurogastroenterology and Motility, 2007, 19, 761-768.	1.6	62
106	Importance of 5â€hydroxytryptamine receptors on intestinal afferents in the regulation of visceral sensitivity. Neurogastroenterology and Motility, 2007, 19, 13-18.	1.6	38
107	Prokinetic Effects of a New Ghrelin Receptor Agonist TZP-101 in a Rat Model of Postoperative Ileus. Digestive Diseases and Sciences, 2007, 52, 2241-2248.	1.1	65
108	Activation of peripheral 5-HT4 receptors attenuates colonic sensitivity to intraluminal distension. Neurogastroenterology and Motility, 2006, 18, 76-86.	1.6	55

#	Article	IF	CITATIONS
109	5-HT2B receptors do not modulate sensitivity to colonic distension in rats with acute colorectal hypersensitivity. Neurogastroenterology and Motility, 2006, 18, 343-345.	1.6	14
110	Effects of serotonin transporter inhibition on gastrointestinal motility and colonic sensitivity in the mouse. Neurogastroenterology and Motility, 2006, 18, 464-471.	1.6	84
111	Long-term expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus in response to an acute colonic inflammation. Brain Research, 2006, 1071, 91-96.	1.1	46
112	Corticotropin-releasing factor 1 receptor-mediated mechanisms inhibit colonic hypersensitivity in rats. Neurogastroenterology and Motility, 2005, 17 , 415 - 422 .	1.6	107
113	Spinal cord stimulation attenuates visceromotor reflexes in a rat model of post-inflammatory colonic hypersensitivity. Autonomic Neuroscience: Basic and Clinical, 2005, 122, 69-76.	1.4	35
114	Preclinical studies of opioids and opioid antagonists on gastrointestinal function. Neurogastroenterology and Motility, 2004, 16, 46-53.	1.6	90
115	Effects of TAK-637 on NK1 receptor-mediated mechanisms regulating colonic secretion. Toxicology and Applied Pharmacology, 2004, 196, 215-222.	1.3	4
116	NK1 receptor-mediated mechanisms regulate colonic hypersensitivity in the guinea pig. Pharmacology Biochemistry and Behavior, 2003, 74, 1005-1013.	1.3	43
117	Attenuation by spinal cord stimulation of a nociceptive reflex generated by colorectal distention in a rat model. Autonomic Neuroscience: Basic and Clinical, 2003, 104, 17-24.	1.4	46
118	In Vitro Effects of Wood Creosote on Enterotoxin-Induced Secretion Measured Electrophysiologically in the Rat Jejunum and Colon Biological and Pharmaceutical Bulletin, 2001, 24, 623-627.	0.6	8
119	Stereotaxic delivery of corticosterone to the amygdala modulates colonic sensitivity in rats. Brain Research, 2001, 893, 135-142.	1.1	116
120	Recombinant human interleukin-11 restores smooth muscle function in the jejunum and colon of human leukocyte antigen-B27 rats with intestinal inflammation. Journal of Pharmacology and Experimental Therapeutics, 2001, 299, 58-66.	1.3	16
121	Recombinant Human Interleukin-11 Modulates Ion Transport and Mucosal Inflammation in the Small Intestine and Colon. Laboratory Investigation, 2000, 80, 1269-1280.	1.7	36
122	An acute inflammatory insult induces long-term colonic hypersensitivity. American Journal of Gastroenterology, 2000, 95, 2534-2534.	0.2	1
123	Evidence for visceral hypersensitivity in high-anxiety rats. Physiology and Behavior, 2000, 69, 379-382.	1.0	111
124	Anti-diarrhoeal effects of seirogan in the rat small intestine and colon examined in vitro. Alimentary Pharmacology and Therapeutics, 1999, 13, 97-102.	1.9	15
125	Comparison of effects on colonic motility and stool characteristics associated with feeding olestra and wheat bran to ambulatory mini-pigs. Digestive Diseases and Sciences, 1999, 44, 1282-1287.	1.1	10