Shoukhrat Mitalipov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3662733/publications.pdf Version: 2024-02-01

SHOUKHPAT MITALIPOV

#	Article	IF	CITATIONS
1	Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature, 2009, 461, 367-372.	27.8	504
2	Towards germline gene therapy of inherited mitochondrial diseases. Nature, 2013, 493, 627-631.	27.8	373
3	Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature, 2014, 511, 177-183.	27.8	307
4	Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature, 2016, 540, 270-275.	27.8	264
5	Brains, Genes, and Primates. Neuron, 2015, 86, 617-631.	8.1	231
6	Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs. Cell Stem Cell, 2016, 18, 625-636.	11.1	190
7	Mitochondrial replacement therapy in reproductive medicine. Trends in Molecular Medicine, 2015, 21, 68-76.	6.7	133
8	Rapid Mitochondrial DNA Segregation in Primate Preimplantation Embryos Precedes Somatic and Germline Bottleneck. Cell Reports, 2012, 1, 506-515.	6.4	125
9	Comparable Frequencies of Coding Mutations and Loss of Imprinting in Human Pluripotent Cells Derived by Nuclear Transfer and Defined Factors. Cell Stem Cell, 2014, 15, 634-642.	11.1	113
10	Incompatibility between Nuclear and Mitochondrial Genomes Contributes to an Interspecies Reproductive Barrier. Cell Metabolism, 2016, 24, 283-294.	16.2	95
11	Functional Human Oocytes Generated by Transfer of Polar Body Genomes. Cell Stem Cell, 2017, 20, 112-119.	11.1	76
12	Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11111-E11120.	7.1	68
13	Mitochondria in pluripotent stem cells: stemness regulators and disease targets. Current Opinion in Genetics and Development, 2016, 38, 1-7.	3.3	41
14	Ma et al. reply. Nature, 2018, 560, E10-E23.	27.8	37
15	Concise Review: Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer: A Horse in the Race?. Stem Cells, 2017, 35, 26-34.	3.2	35
16	Mitochondrial genome inheritance and replacement in the human germline. EMBO Journal, 2017, 36, 2177-2181.	7.8	28
17	Germline and somatic mtDNA mutations in mouse aging. PLoS ONE, 2018, 13, e0201304.	2.5	24
18	Germline transmission of donor, maternal and paternal mtDNA in primates. Human Reproduction, 2021, 36, 493-505.	0.9	22

SHOUKHRAT MITALIPOV

#	Article	IF	CITATIONS
19	Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors. Genome Biology, 2019, 20, 101.	8.8	20
20	The Rho-associated kinase inhibitor fasudil can replace Y-27632 for use in human pluripotent stem cell research. PLoS ONE, 2020, 15, e0233057.	2.5	16
21	Deleterious mtDNA mutations are common in mature oocytes. Biology of Reproduction, 2020, 102, 607-619.	2.7	15
22	Mitochondrial Replacement Therapies Can Circumvent mtDNA-Based Disease Transmission. Cell Metabolism, 2014, 20, 6-8.	16.2	13
23	Haploidy in somatic cells is induced by mature oocytes in mice. Communications Biology, 2022, 5, 95.	4.4	7
24	Horizontal mtDNA transfer between cells is common during mouse development. IScience, 2022, 25, 103901.	4.1	7
25	Reply to: Reversion after replacement of mitochondrial DNA. Nature, 2019, 574, E12-E13.	27.8	6
26	Sarcomere Gene Mutation correction. European Heart Journal, 2018, 39, 1506-1507.	2.2	2