List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3662614/publications.pdf Version: 2024-02-01

ΗΔΎκλΝ SAND

#	Article	IF	CITATIONS
1	Of wolves and bears: Seasonal drivers of interference and exploitation competition between apex predators. Ecological Monographs, 2022, 92, .	2.4	11
2	Whole-genome resequencing of temporally stratified samples reveals substantial loss of haplotype diversity in the highly inbred Scandinavian wolf population. Genome Research, 2022, 32, 449-458.	2.4	8
3	Rewilding by Wolf Recolonisation, Consequences for Ungulate Populations and Game Hunting. Biology, 2022, 11, 317.	1.3	3
4	Genetic signature of immigrants and their effect on genetic diversity in the recently established Scandinavian wolf population. Conservation Genetics, 2022, 23, 359-373.	0.8	8
5	A Standardized Method for Experimental Human Approach Trials on Wild Wolves. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	1
6	Using citizen data in a population model to estimate population size of moose (Alces alces). Ecological Modelling, 2022, 471, 110066.	1.2	4
7	The return of large carnivores: Using hunter observation data to understand the role of predators on ungulate populations. Global Ecology and Conservation, 2021, 27, e01587.	1.0	5
8	Integrated population models poorly estimate the demographic contribution of immigration. Methods in Ecology and Evolution, 2021, 12, 1899-1910.	2.2	13
9	Seasonal release from competition explains partial migration in European moose. Oikos, 2021, 130, 1548-1561.	1.2	8
10	Multiple speciesâ€specific molecular markers using nanofluidic array as a tool to detect prey DNA from carnivore scats. Ecology and Evolution, 2021, 11, 11739-11748.	0.8	7
11	Behavioral effects of wolf presence on moose habitat selection: testing the landscape of fear hypothesis in an anthropogenic landscape. Oecologia, 2021, 197, 101-116.	0.9	9
12	Does recolonization of wolves affect moose browsing damage on young Scots pine?. Forest Ecology and Management, 2020, 473, 118298.	1.4	12
13	Individual Variation in Predatory Behavior, Scavenging and Seasonal Prey Availability as Potential Drivers of Coexistence between Wolves and Bears. Diversity, 2020, 12, 356.	0.7	22
14	Impact of a recolonizing, cross-border carnivore population on ungulate harvest in Scandinavia. Scientific Reports, 2020, 10, 21670.	1.6	12
15	Promoting grazing or rewilding initiatives against rural exodus? The return of the wolf and other large carnivores must be considered. Environmental Conservation, 2020, 47, 269-276.	0.7	12
16	Wolf habitat selection when sympatric or allopatric with brown bears in Scandinavia. Scientific Reports, 2020, 10, 9941.	1.6	9
17	Interspecific Interactions between Brown Bears, Ungulates, and Other Large Carnivores. , 2020, , 36-44.		2
18	Testing the influence of habitat experienced during the natal phase on habitat selection later in life in Scandinavian wolves. Scientific Reports, 2019, 9, 6526.	1.6	8

#	Article	IF	CITATIONS
19	Does wolf presence reduce moose browsing intensity in young forest plantations?. Ecography, 2018, 41, 1776-1787.	2.1	29
20	Genomic consequences of intensive inbreeding in an isolated wolf population. Nature Ecology and Evolution, 2018, 2, 124-131.	3.4	146
21	No place like home? A test of the natal habitat-biased dispersal hypothesis in Scandinavian wolves. Royal Society Open Science, 2018, 5, 181379.	1.1	51
22	Habitat segregation between brown bears and gray wolves in a humanâ€dominated landscape. Ecology and Evolution, 2018, 8, 11450-11466.	0.8	55
23	Data to model risks for recolonizing wolves in Scandinavia through the integration of territory presence and human-driven mortalities. Data in Brief, 2018, 20, 686-690.	0.5	1
24	Competition between apex predators? Brown bears decrease wolf kill rate on two continents. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162368.	1.2	70
25	Fear or food – abundance of red fox in relation to occurrence of lynx and wolf. Scientific Reports, 2017, 7, 9059.	1.6	22
26	Group or ungroup – moose behavioural response to recolonization of wolves. Frontiers in Zoology, 2017, 14, 10.	0.9	14
27	Let's stay together? Intrinsic and extrinsic factors involved in pair bond dissolution in a recolonizing wolf population. Journal of Animal Ecology, 2017, 86, 43-54.	1.3	39
28	Sarcoptic mange in the Scandinavian wolf Canis lupus population. BMC Veterinary Research, 2016, 12, 156.	0.7	16
29	Mobility of moose—comparing the effects of wolf predation risk, reproductive status, and seasonality. Ecology and Evolution, 2016, 6, 8870-8880.	0.8	19
30	Scaling up movements: from individual space use to population patterns. Ecosphere, 2016, 7, e01524.	1.0	41
31	Genetic rescue in a severely inbred wolf population. Molecular Ecology, 2016, 25, 4745-4756.	2.0	92
32	Prey Selection of Scandinavian Wolves: Single Large or Several Small?. PLoS ONE, 2016, 11, e0168062.	1.1	34
33	Predatorâ€dependent functional response in wolves: from food limitation to surplus killing. Journal of Animal Ecology, 2015, 84, 102-112.	1.3	93
34	Wolves, people, and brown bears influence the expansion of the recolonizing wolf population in Scandinavia. Ecosphere, 2015, 6, 1-14.	1.0	67
35	Response of Moose Hunters to Predation following Wolf Return in Sweden. PLoS ONE, 2015, 10, e0119957.	1.1	33
36	Behavioral responses of wolves to roads: scale-dependent ambivalence. Behavioral Ecology, 2014, 25, 1353-1364.	1.0	110

#	Article	IF	CITATIONS
37	Feeding under high risk of intraguild predation: vigilance patterns of two medium-sized generalist predators. Journal of Mammalogy, 2014, 95, 862-870.	0.6	32
38	Testing the risk of predation hypothesis: the influence of recolonizing wolves on habitat use by moose. Oecologia, 2014, 176, 69-80.	0.9	39
39	Sharing the bounty—Adjusting harvest to predator return in the Scandinavian human–wolf–bear–moose system. Ecological Modelling, 2013, 265, 140-148.	1.2	58
40	Home range size variation in a recovering wolf population: evaluating the effect of environmental, demographic, and social factors. Oecologia, 2013, 173, 813-825.	0.9	99
41	Decomposing risk: Landscape structure and wolf behavior generate different predation patterns in two sympatric ungulates. Ecological Applications, 2013, 23, 1722-1734.	1.8	75
42	Biomass Flow and Scavengers Use of Carcasses after Re-Colonization of an Apex Predator. PLoS ONE, 2013, 8, e77373.	1.1	94
43	Predicting the potential demographic impact of predators on their prey: a comparative analysis of two carnivore–ungulate systems in Scandinavia. Journal of Animal Ecology, 2012, 81, 443-454.	1.3	117
44	Assessing the influence of prey–predator ratio, prey age structure and packs size on wolf kill rates. Oikos, 2012, 121, 1454-1463.	1.2	43
45	Activity patterns of predator and prey: a simultaneous study of GPS-collared wolves and moose. Animal Behaviour, 2011, 81, 423-431.	0.8	63
46	Can pellet counts be used to accurately describe winter habitat selection by moose Alces alces?. European Journal of Wildlife Research, 2011, 57, 1017-1023.	0.7	39
47	Building a mechanistic understanding of predation with GPS-based movement data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2279-2288.	1.8	89
48	Encounter frequencies between GPS ollared wolves (<i>Canis lupus</i>) and moose (<i>Alces) Tj ETQq0 0 0 i</i>	rgBT /Over 0.7	lock 10 Tf 50 $\frac{32}{32}$
49	Wolf predation on moose and roe deer: chase distances and outcome of encounters. Acta Theriologica, 2009, 54, 207-218.	1.1	47
50	Summer kill rates and predation pattern in a wolf–moose system: can we rely on winter estimates?. Oecologia, 2008, 156, 53-64.	0.9	155
51	Evaluation of four methods used to estimate population density of moose Alces alces. Wildlife Biology, 2008, 14, 358-371.	0.6	63
52	Wolf Movement Patterns: a Key to Estimation of Kill Rate?. Journal of Wildlife Management, 2007, 71, 1177-1182.	0.7	42
53	Effects of hunting group size, snow depth and age on the success of wolves hunting moose. Animal Behaviour, 2006, 72, 781-789.	0.8	95
54	Cross-continental differences in patterns of predation: will naive moose in Scandinavia ever learn?. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1421-1427	1.2	77

#	Article	IF	CITATIONS
55	Using GPS technology and GIS cluster analyses to estimate kill rates in wolf—ungulate ecosystems. Wildlife Society Bulletin, 2005, 33, 914-925.	1.6	154
56	The recovery, distribution, and population dynamics of wolves on the Scandinavian peninsula, 1978-1998. Canadian Journal of Zoology, 2001, 79, 710-725.	0.4	224
57	Life history patterns in female moose (Alces alces): the relationship between age, body size, fecundity and environmental conditions. Oecologia, 1996, 106, 212-220.	0.9	128
58	Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia, 1995, 102, 433-442.	0.9	100