
Massimiliano Di Filippo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3662483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neurosciences, 2007, 30, 211-219.	8.6	707
2	Neurofilament light chain as a biomarker in neurological disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 870-881.	1.9	623
3	Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neuroscience, 2014, 17, 1022-1030.	14.8	598
4	Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap. Lancet Neurology, The, 2010, 9, 1106-1117.	10.2	329
5	A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine–acetylcholine synaptic balance. Lancet Neurology, The, 2006, 5, 974-983.	10.2	289
6	Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends in Pharmacological Sciences, 2008, 29, 402-412.	8.7	172
7	New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson's disease. Lancet Neurology, The, 2013, 12, 811-821.	10.2	165
8	Distinct Levels of Dopamine Denervation Differentially Alter Striatal Synaptic Plasticity and NMDA Receptor Subunit Composition. Journal of Neuroscience, 2010, 30, 14182-14193.	3.6	155
9	Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiology of Disease, 2013, 52, 229-236.	4.4	155
10	Multiple sclerosis and cognition: synaptic failure and network dysfunction. Nature Reviews Neuroscience, 2018, 19, 599-609.	10.2	151
11	The Distinct Role of Medium Spiny Neurons and Cholinergic Interneurons in the D ₂ /A _{2A} Receptor Interaction in the Striatum: Implications for Parkinson's Disease. Journal of Neuroscience, 2011, 31, 1850-1862.	3.6	140
12	Plasticity and repair in the post-ischemic brain. Neuropharmacology, 2008, 55, 353-362.	4.1	132
13	Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain, 2011, 134, 375-387.	7.6	125
14	Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson's disease. Brain, 2012, 135, 1884-1899.	7.6	124
15	Mitochondria and the Link Between Neuroinflammation and Neurodegeneration. Journal of Alzheimer's Disease, 2010, 20, S369-S379.	2.6	118
16	Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory. Behavioural Brain Research, 2009, 199, 108-118.	2.2	115
17	Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18985-18990.	7.1	113
18	A new enzyme-linked immunosorbent assay for neurofilament light in cerebrospinal fluid: analytical validation and clinical evaluation. Alzheimer's Research and Therapy, 2018, 10, 8.	6.2	111

MASSIMILIANO DI FILIPPO

#	Article	IF	CITATIONS
19	Multiple Mechanisms Underlying the Neuroprotective Effects of Antiepileptic Drugs Against In Vitro Ischemia. Stroke, 2006, 37, 1319-1326.	2.0	95
20	Sensitization, glutamate, and the link between migraine and fibromyalgia. Current Pain and Headache Reports, 2007, 11, 343-351.	2.9	95
21	Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain, 2019, 142, 1365-1385.	7.6	82
22	Brain atrophy and lesion load measures over 1 year relate to clinical status after 6 years in patients with clinically isolated syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 204-208.	1.9	79
23	Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N -Methyl-D-Aspartate Receptor Subunit. Biological Psychiatry, 2016, 79, 402-414.	1.3	77
24	Ischemic Stroke Injury Is Mediated by Aberrant Cdk5. Journal of Neuroscience, 2014, 34, 8259-8267.	3.6	73
25	Epilepsy, amyloid-î², and D1 dopamine receptors: a possible pathogenetic link?. Neurobiology of Aging, 2016, 48, 161-171.	3.1	71
26	Hippocampal Synaptic Plasticity, Memory, and Epilepsy: Effects of Long-Term Valproic Acid Treatment. Biological Psychiatry, 2010, 67, 567-574.	1.3	68
27	Persistent activation of microglia and NADPH oxidase drive hippocampal dysfunction in experimental multiple sclerosis. Scientific Reports, 2016, 6, 20926.	3.3	68
28	Production of brain-derived neurotrophic factor by mononuclear cells of patients with multiple sclerosis treated with glatiramer acetate, interferon-β 1a, and high doses of immunoglobulins. Multiple Sclerosis Journal, 2007, 13, 313-331.	3.0	58
29	Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3848-3857.	7.1	58
30	Electrophysiology and Pharmacology of Striatal Neuronal Dysfunction Induced by Mitochondrial Complex I Inhibition. Journal of Neuroscience, 2008, 28, 8040-8052.	3.6	54
31	mRNA COVID-19 vaccines do not increase the short-term risk of clinical relapses in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 448-450.	1.9	53
32	Fibroblast growth factor-2 levels are elevated in the cerebrospinal fluid of multiple sclerosis patients. Neuroscience Letters, 2008, 435, 223-228.	2.1	52
33	The Endocannabinoid System in Parkinsons Disease. Current Pharmaceutical Design, 2008, 14, 2337-2346.	1.9	52
34	Synaptic plasticity, dopamine and Parkinson's disease: one step ahead. Brain, 2008, 132, 285-287.	7.6	50
35	CSF and Blood Biomarkers in Neuroinflammatory and Neurodegenerative Diseases: Implications for Treatment. Trends in Pharmacological Sciences, 2020, 41, 1023-1037.	8.7	48
36	Beyond clinical changes: Rehabilitation-induced neuroplasticity in MS. Multiple Sclerosis Journal, 2019, 25, 1348-1362.	3.0	47

#	Article	IF	CITATIONS
37	"Better explanations―in multiple sclerosis diagnostic workup. Neurology, 2019, 92, e2527-e2537.	1.1	44
38	Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system. Frontiers in Cellular Neuroscience, 2015, 9, 192.	3.7	43
39	Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. Journal of Neuroimmunology, 2007, 188, 146-158.	2.3	41
40	Cerebrospinal fluid neurofilament light chain tracks cognitive impairment in multiple sclerosis. Journal of Neurology, 2019, 266, 2157-2163.	3.6	41
41	Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis. Cell Reports, 2021, 37, 110094.	6.4	38
42	2017 revisions of McDonald criteria shorten the time to diagnosis of multiple sclerosis in clinically isolated syndromes. Journal of Neurology, 2018, 265, 2684-2687.	3.6	35
43	Host and Microbial Tryptophan Metabolic Profiling in Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 157.	4.8	35
44	CSF proteome analysis in multiple sclerosis patients by twoâ€dimensional electrophoresis. European Journal of Neurology, 2008, 15, 998-1001.	3.3	34
45	New synaptic and molecular targets for neuroprotection in Parkinson's disease. Movement Disorders, 2013, 28, 51-60.	3.9	34
46	Neuroinflammation and Alzheimer's Disease: A Machine Learning Approach to CSF Proteomics. Cells, 2021, 10, 1930.	4.1	34
47	Cerebrospinal fluid free light chains compared to oligoclonal bands as biomarkers in multiple sclerosis. Journal of Neuroimmunology, 2020, 339, 577108.	2.3	31
48	Plastic abnormalities in experimental Huntington's disease. Current Opinion in Pharmacology, 2007, 7, 106-111.	3.5	30
49	Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Brain Research, 2015, 1621, 205-213.	2.2	30
50	Region- and age-dependent reductions of hippocampal long-term potentiation and NMDA to AMPA ratio in a genetic model of Alzheimer's disease. Neurobiology of Aging, 2015, 36, 123-133.	3.1	30
51	Breakthrough SARS-CoV-2 infections in MS patients on disease-modifying therapies. Multiple Sclerosis Journal, 2022, 28, 2106-2111.	3.0	30
52	Subgroup comparison according to clinical phenotype and serostatus in autoimmune encephalitis: a multicenter retrospective study. European Journal of Neurology, 2020, 27, 633-643.	3.3	29
53	Impaired Plasticity at Specific Subset of Striatal Synapses in the Ts65Dn Mouse Model of Down Syndrome. Biological Psychiatry, 2010, 67, 666-671.	1.3	28
54	Microglial activation and the nitric oxide/cGMP/PKG pathway underlie enhanced neuronal vulnerability to mitochondrial dysfunction in experimental multiple sclerosis. Neurobiology of Disease, 2018, 113, 97-108.	4.4	27

MASSIMILIANO DI FILIPPO

#	Article	IF	CITATIONS
55	Epilepsyâ€induced abnormal striatal plasticity in Bassoon mutant mice. European Journal of Neuroscience, 2009, 29, 1979-1993.	2.6	26
56	Acetyl-l-Carnitine selectively prevents post-ischemic LTP via a possible action on mitochondrial energy metabolism. Neuropharmacology, 2008, 55, 223-229.	4.1	25
57	A multicentRE observational analysiS of PErsistenCe to Treatment in the new multiple sclerosis era: the RESPECT study. Journal of Neurology, 2018, 265, 1174-1183.	3.6	23
58	Cognitive impairment in multiple sclerosis: lessons from cerebrospinal fluid biomarkers. Neural Regeneration Research, 2021, 16, 36.	3.0	23
59	Pathways of neurodegeneration and experimental models of basal ganglia disorders: Downstream effects of mitochondrial inhibition. European Journal of Pharmacology, 2006, 545, 65-72.	3.5	22
60	ACh/Dopamine Crosstalk in Motor Control and Reward: A Crucial Role for α6-Containing Nicotinic Receptors?. Neuron, 2008, 60, 4-7.	8.1	22
61	Dopamine D2 receptor activation potently inhibits striatal glutamatergic transmission in a G2019S LRRK2 genetic model of Parkinson's disease. Neurobiology of Disease, 2018, 118, 1-8.	4.4	22
62	Cerebrospinal fluid neurofilament light chain predicts disease activity after the first demyelinating event suggestive of multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 35, 228-232.	2.0	20
63	Hippocampal epileptogenesis in autoimmune encephalitis. Annals of Clinical and Translational Neurology, 2019, 6, 2261-2269.	3.7	20
64	Hippocampal neuroplasticity and inflammation: relevance for multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 2017, 2, .	1.1	19
65	Low doses of Perampanel protect striatal and hippocampal neurons against in vitro ischemia by reversing the ischemia-induced alteration of AMPA receptor subunit composition. Neurobiology of Disease, 2020, 140, 104848.	4.4	19
66	Tracing Neurological Diseases in the Presymptomatic Phase: Insights From Neurofilament Light Chain. Frontiers in Neuroscience, 2021, 15, 672954.	2.8	19
67	A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation. PLoS ONE, 2012, 7, e38312.	2.5	18
68	A multicenter study on the diagnostic significance of a single cerebrospinal fluid IgG band. Journal of Neurology, 2017, 264, 973-978.	3.6	18
69	Real world experience with teriflunomide in multiple sclerosis: the TER-Italy study. Journal of Neurology, 2021, 268, 2922-2932.	3.6	18
70	Interferon-β1a protects neurons against mitochondrial toxicity via modulation of STAT1 signaling: Electrophysiological evidence. Neurobiology of Disease, 2014, 62, 387-393.	4.4	17
71	Lower urinary tract symptoms and urodynamic dysfunction in clinically isolated syndromes suggestive of multiple sclerosis. European Journal of Neurology, 2014, 21, 648-653.	3.3	17
72	Interferon-β1a modulates glutamate neurotransmission in the CNS through CaMKII and GluN2A-containing NMDA receptors. Neuropharmacology, 2016, 100, 98-105.	4.1	17

#	Article	IF	CITATIONS
73	Insights into the Pathophysiology of Psychiatric Symptoms in Central Nervous System Disorders: Implications for Early and Differential Diagnosis. International Journal of Molecular Sciences, 2021, 22, 4440.	4.1	17
74	Synaptic Dysfunction in Multiple Sclerosis: A Red Thread from Inflammation to Network Disconnection. International Journal of Molecular Sciences, 2021, 22, 9753.	4.1	17
75	Multitarget disease-modifying therapy in Parkinson's disease?. Lancet Neurology, The, 2015, 14, 975-976.	10.2	16
76	Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Frontiers in Immunology, 2021, 12, 644294.	4.8	16
77	From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Frontiers in Cellular Neuroscience, 2020, 14, 158.	3.7	15
78	Characteristics and treatment of Multiple Sclerosis-related trigeminal neuralgia: An Italian multi-centre study. Multiple Sclerosis and Related Disorders, 2020, 37, 101461.	2.0	14
79	Ischemic-LTP in Striatal Spiny Neurons of both Direct and Indirect Pathway Requires the Activation of D1-Like Receptors and NO/Soluble Guanylate Cyclase/cGMP Transmission. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 278-286.	4.3	13
80	Lacosamide protects striatal and hippocampal neurons from inÂvitro ischemia without altering physiological synaptic plasticity. Neuropharmacology, 2018, 135, 424-430.	4.1	13
81	Heterozygous X-linked adrenoleukodystrophy-associated myelopathy mimicking primary progressive multiple sclerosis. Journal of Neurology, 2011, 258, 323-324.	3.6	12
82	Retinopathy during interferon-β treatment for multiple sclerosis: case report and review of the literature. Journal of Neurology, 2016, 263, 422-427.	3.6	12
83	High risk of early conversion to multiple sclerosis in clinically isolated syndromes with dissemination in space at baseline. Journal of the Neurological Sciences, 2017, 379, 236-240.	0.6	12
84	Defining the course of tumefactive multiple sclerosis: A large retrospective multicentre study. European Journal of Neurology, 2021, 28, 1299-1307.	3.3	12
85	Na + /Ca 2+ Exchanger Maintains Ionic Homeostasis in the Peri-Infarct Area. Stroke, 2007, 38, 1614-1620.	2.0	11
86	Brain's traffic lights. Nature, 2010, 466, 449-449.	27.8	10
87	Serum neurofilament light chain as a preclinical marker of neurodegeneration. Lancet Neurology, The, 2019, 18, 1070-1071.	10.2	9
88	Management of hepatitis B virus prophylaxis in patients treated with disease-modifying therapies for multiple sclerosis: a multicentric Italian retrospective study. Journal of Neurology, 2022, 269, 3301-3307.	3.6	9
89	Infliximab monotherapy for neuro-Behçet's disease: A case report. Journal of the Neurological Sciences, 2014, 347, 389-390.	0.6	8
90	The changing tree in Parkinson's disease. Nature Neuroscience, 2015, 18, 1196-1198.	14.8	7

#	Article	IF	CITATIONS
91	The no evidence of disease activity (NEDA) concept in MS: impact of spinal cord MRI. Journal of Neurology, 2022, 269, 3129-3135.	3.6	6
92	Visual pathway involvement in multiple sclerosis: Look straight in the eyes. Multiple Sclerosis and Related Disorders, 2017, 17, 217-219.	2.0	5
93	Treatment of multiple sclerosis relapses with high-dose methylprednisolone reduces the evolution of contrast-enhancing lesions into persistent black holes. Journal of Neurology, 2018, 265, 522-529.	3.6	5
94	Extracranial Venous Drainage Pattern in Multiple Sclerosis and Healthy Controls: Application of the 2011 Diagnostic Criteria for Chronic Cerebrospinal Venous Insufficiency. European Neurology, 2016, 76, 62-68.	1.4	4
95	Editorial: Cognition in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 751687.	2.4	4
96	Finding a way to preserve mitochondria: new pathogenic pathways in experimental multiple sclerosis. Neural Regeneration Research, 2019, 14, 77.	3.0	4
97	A young patient with type C multiple system atrophy and hereditary hemochromatosis. Journal of Neurology, 2010, 257, 294-295.	3.6	3
98	A pathophysiological link between dystonia, striatal interneurons and neuropeptide Y. Brain, 2013, 136, 1341-1344.	7.6	3
99	Multiple sclerosis and chronic progressive external ophthalmoplegia associated with a large scale mitochondrial DNA single deletion. Journal of Neurology, 2016, 263, 1449-1451.	3.6	2
100	Harmonization of real-world studies in multiple sclerosis: Retrospective analysis from the rirems group. Multiple Sclerosis and Related Disorders, 2020, 45, 102394.	2.0	2
101	Inter-Laboratory Concordance of Cerebrospinal Fluid and Serum Kappa Free Light Chain Measurements. Biomolecules, 2022, 12, 677.	4.0	2
102	A multicenter survey on access to care in Multiple Sclerosis-related trigeminal neuralgia. Journal of the Neurological Sciences, 2021, 424, 117430.	0.6	1
103	A blood test for Alzheimer's disease: a step forward. Lancet Neurology, The, 2021, 20, 691-693.	10.2	1
104	An "all-wheel drive―proposal to accelerate clinical research in common and rare neurological diseases. Neurological Sciences, 2020, 41, 789-793.	1.9	0
105	Informing MS patients on treatment options: a consensus on the process of consent taking. Neurological Sciences, 2020, 41, 2249-2253.	1.9	Ο