List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3662480/publications.pdf

Version: 2024-02-01



| # | Article                                                                                                                                | IF  | CITATIONS |
|---|----------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | Single-variable porous nanomaterial series from polymer structure-directing agents. Journal of<br>Materials Research, 2022, 37, 25-42. | 1.2 | 5         |

- Cover Feature: Amorphization of Pseudocapacitive Tâ<sup>^</sup>Nb<sub>2</sub>O<sub>5</sub> Accelerates Lithium Diffusivity as Revealed Using Tunable Isomorphic Architectures (Batteries & amp; Supercaps) Tj ETQq0 0 0 r**g**AT /Overlock 10 Tf 5
- Understanding Rapid Intercalation Materials One Parameter at a Time. Advanced Functional Materials, 2022, 32, .
- Cover Feature: Faster Intercalation Pseudocapacitance Enabled by Adjustable Amorphous Titania Where Tunable Isomorphic Architectures Reveal Accelerated Lithium Diffusivity (Batteries & 2000) Ti ETOg0 0 0 rg ADVERTION OF The State of the St

| 7  | Where fullable isotholphic Alchitectures Reveal Accelerated Lithium Dirusivity (Datteries Gamp,) ij LiQq0 0 0                                                                                       | igoz.novei |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
| 5  | Nanostructure Dependence of Tâ€Nb <sub>2</sub> O <sub>5</sub> Intercalation Pseudocapacitance<br>Probed Using Tunable Isomorphic Architectures. Advanced Functional Materials, 2021, 31, .          | 7.8        | 24 |
| 6  | Tailored porous carbons enabled by persistent micelles with glassy cores. Materials Advances, 2021, 2, 5381-5395.                                                                                   | 2.6        | 10 |
| 7  | Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells.<br>Membranes, 2021, 11, 102.                                                                                | 1.4        | 13 |
| 8  | Persistent Micelle Corona Chemistry Enables Constant Micelle Core Size with Independent Control of Functionality and Polyelectrolyte Response. Langmuir, 2021, 37, 9817-9825.                       | 1.6        | 7  |
| 9  | Mesoporous TiO <sub>2</sub> Microparticles with Tailored Surfaces, Pores, Walls, and Particle<br>Dimensions Using Persistent Micelle Templates. Langmuir, 2021, 37, 12874-12886.                    | 1.6        | 5  |
| 10 | Surfaceâ€Initiated RAFT Polymerization of 2,3â€Dimethylâ€1,3â€butadiene on Silica Nanoparticles for<br>Matrixâ€free Methyl Rubber Nanocomposites. Journal of Polymer Science, 2020, 58, 417-427.    | 2.0        | 3  |
| 11 | Tunable Fluorophobic Effect Determines Nanoparticle Dispersion in Homopolymers and Block<br>Polymers. Advanced Materials Interfaces, 2020, 7, 1901691.                                              | 1.9        | 4  |
| 12 | Frontiers in hybrid and interfacial materials chemistry research. MRS Bulletin, 2020, 45, 951-964.                                                                                                  | 1.7        | 6  |
| 13 | Effects of Trace Water on Self-Assembly of Sulfonated Block Copolymers During Solution Processing.<br>ACS Applied Polymer Materials, 2020, 2, 4893-4901.                                            | 2.0        | 5  |
| 14 | A Dual Threat: Redoxâ€Activity and Electronic Structures of Wellâ€Defined Donor–Acceptor Fulleretic<br>Covalentâ€Organic Materials. Angewandte Chemie, 2020, 132, 6056-6062.                        | 1.6        | 8  |
| 15 | A Dual Threat: Redoxâ€Activity and Electronic Structures of Wellâ€Defined Donor–Acceptor Fulleretic<br>Covalentâ€Organic Materials. Angewandte Chemie - International Edition, 2020, 59, 6000-6006. | 7.2        | 20 |
| 16 | Supramolecular Assembly of Oriented Spherulitic Crystals of Conjugated Polymers Surrounding Carbon Nanotube Fibers. Macromolecular Rapid Communications, 2019, 40, 1900098.                         | 2.0        | 8  |
| 17 | Widely tunable persistent micelle templates via homopolymer swelling. Soft Matter, 2019, 15, 5193-5203.                                                                                             | 1.2        | 19 |
| 18 | Surface Reconstruction Limited Conductivity in Block opolymer Li Battery Electrolytes. Advanced Functional Materials, 2019, 29, 1905977.                                                            | 7.8        | 26 |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Atomic Layer Deposition of Spaceâ€Efficient SnO 2 Underlayers for BiVO 4 Host–Guest Architectures for Photoassisted Water Splitting. ChemSusChem, 2019, 12, 1770-1770.                                 | 3.6 | 1         |
| 20 | Full Gamut Wall Tunability from Persistent Micelle Templates via Ex Situ Hydrolysis. Small, 2019, 15, e1900393.                                                                                        | 5.2 | 15        |
| 21 | Atomic Layer Deposition of Spaceâ€Efficient SnO 2 Underlayers for BiVO 4 Host–Guest Architectures for Photoassisted Water Splitting. ChemSusChem, 2019, 12, 1916-1924.                                 | 3.6 | 10        |
| 22 | Expanded Kinetic Control for Persistent Micelle Templates with Solvent Selection. Langmuir, 2018, 34, 5738-5749.                                                                                       | 1.6 | 18        |
| 23 | Surface-initiated reversible addition-fragmentation chain transfer polymerization of chloroprene and mechanical properties of matrix-free polychloroprene nanocomposites. Polymer, 2018, 135, 193-199. | 1.8 | 14        |
| 24 | Emerging Postsynthetic Improvements of BiVO <sub>4</sub> Photoanodes for Solar Water Splitting.<br>ACS Energy Letters, 2018, 3, 112-124.                                                               | 8.8 | 97        |
| 25 | QCM detection of molecule–nanoparticle interactions for ligand shells of varying morphology.<br>Nanoscale, 2018, 10, 19107-19116.                                                                      | 2.8 | 10        |
| 26 | Controlling Selfâ€Assembly in Gyroid Terpolymer Films By Solvent Vapor Annealing. Small, 2018, 14,<br>e1802401.                                                                                        | 5.2 | 21        |
| 27 | Ringâ€Banded Spherulitic Crystals of Poly(3â€butylthiophene) via Controlled Solvent Evaporation.<br>Macromolecular Chemistry and Physics, 2018, 219, 1800204.                                          | 1.1 | 9         |
| 28 | Cavitation Enables Switchable and Rapid Block Polymer Exchange under High-χN Conditions.<br>Macromolecules, 2018, 51, 6967-6975.                                                                       | 2.2 | 10        |
| 29 | Ordered Nanostructures of Carbon Nanotube–Polymer Composites from Lyotropic Liquid Crystal<br>Templating. Macromolecular Chemistry and Physics, 2018, 219, 1800197.                                    | 1.1 | 9         |
| 30 | Multi-Scale Assembly of Polythiophene-Surfactant Supramolecular Complexes for Charge Transport<br>Anisotropy. Macromolecules, 2017, 50, 1047-1055.                                                     | 2.2 | 18        |
| 31 | Robust porous polymers enabled by a fast trifluoroacetic acid etch with improved selectivity for polylactide. Materials Chemistry Frontiers, 2017, 1, 1526-1533.                                       | 3.2 | 9         |
| 32 | Surface functionalized atomic layer deposition of bismuth vanadate for single-phase scheelite.<br>Journal of Materials Chemistry A, 2017, 5, 6060-6069.                                                | 5.2 | 9         |
| 33 | How to make persistent micelle templates in 24 hours and know it using X-ray scattering. Journal of<br>Materials Chemistry A, 2017, 5, 11840-11853.                                                    | 5.2 | 26        |
| 34 | Matrix-Free Polymer Nanocomposite Thermoplastic Elastomers. Macromolecules, 2017, 50, 4742-4753.                                                                                                       | 2.2 | 40        |
| 35 | Cavitation-enabled rapid and tunable evolution of high-ï‡N micelles as templates for ordered mesoporous oxides. Nanoscale, 2017, 9, 1393-1397.                                                         | 2.8 | 15        |
| 36 | Hydrogen-Bonding-Directed Ordered Assembly of Carboxylated Poly(3-Alkylthiophene)s. ACS Omega, 2017, 2, 8526-8535.                                                                                     | 1.6 | 19        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials. ChemSusChem, 2016, 9, 1727-1735.                                                                                                            | 3.6  | 17        |
| 38 | Nanostructured Antimonyâ€Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile<br>Transparent Current Collectors for Biophotovoltaics. Advanced Functional Materials, 2016, 26,<br>6682-6692.          | 7.8  | 28        |
| 39 | Ordered Mesoporous to Macroporous Oxides with Tunable Isomorphic Architectures: Solution<br>Criteria for Persistent Micelle Templates. Chemistry of Materials, 2016, 28, 1653-1667.                                  | 3.2  | 57        |
| 40 | Controlling the coassembly of highly amphiphilic block copolymers with a hydrolytic sol by solvent exchange. RSC Advances, 2015, 5, 22499-22502.                                                                     | 1.7  | 4         |
| 41 | Block copolymer self-assembly for nanophotonics. Chemical Society Reviews, 2015, 44, 5076-5091.                                                                                                                      | 18.7 | 328       |
| 42 | Ordered mesoporous titania from highly amphiphilic block copolymers: tuned solution conditions enable highly ordered morphologies and ultra-large mesopores. Journal of Materials Chemistry A, 2015, 3, 11478-11492. | 5.2  | 35        |
| 43 | A high transmission wave-guide wire network made by self-assembly. Nanoscale, 2015, 7, 1032-1036.                                                                                                                    | 2.8  | 13        |
| 44 | On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy and Environmental Science, 2014, 7, 4044-4052.                                                | 15.6 | 121       |
| 45 | Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Waterâ€Splitting<br>Photocathodes. Advanced Functional Materials, 2014, 24, 303-311.                                                         | 7.8  | 253       |
| 46 | Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials. Physical Review Applied, 2014, 2, .                                                                                                     | 1.5  | 37        |
| 47 | Highâ€5urfaceâ€Area Porous Platinum Electrodes for Enhanced Charge Transfer. Advanced Energy<br>Materials, 2014, 4, 1400510.                                                                                         | 10.2 | 26        |
| 48 | Tunable 3D Extended Selfâ€Assembled Gold Metamaterials with Enhanced Light Transmission. Advanced Materials, 2013, 25, 2713-2716.                                                                                    | 11.1 | 80        |
| 49 | Low temperature crystallisation of mesoporous TiO2. Nanoscale, 2013, 5, 10518.                                                                                                                                       | 2.8  | 19        |
| 50 | Self-Cleaning Antireflective Optical Coatings. Nano Letters, 2013, 13, 5329-5335.                                                                                                                                    | 4.5  | 155       |
| 51 | Improved Nonaqueous Synthesis of TiO <sub>2</sub> for Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 8981-8989.                                                                                                      | 7.3  | 52        |
| 52 | Low-Temperature Crystalline Titanium Dioxide by Atomic Layer Deposition for Dye-Sensitized Solar<br>Cells. ACS Applied Materials & Interfaces, 2013, 5, 3487-3493.                                                   | 4.0  | 70        |
| 53 | Transparent, Conducting Nb:SnO <sub>2</sub> for Host–Guest Photoelectrochemistry. Nano Letters, 2012, 12, 5431-5435.                                                                                                 | 4.5  | 122       |
| 54 | Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles. Journal of Materials Chemistry, 2012, 22, 1078-1087.                                          | 6.7  | 58        |

| #  | Article                                                                                                                                                                                                    | IF             | CITATIONS   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| 55 | Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability. Energy and Environmental Science, 2012, 5, 8673.                                                   | 15.6           | 401         |
| 56 | Layerâ€byâ€Layer Formation of Blockâ€Copolymerâ€Derived TiO <sub>2</sub> for Solidâ€State Dyeâ€Sensitized<br>Solar Cells. Small, 2012, 8, 432-440.                                                         | 5.2            | 35          |
| 57 | General Method for the Synthesis of Hierarchical Nanocrystal-Based Mesoporous Materials. ACS<br>Nano, 2012, 6, 6386-6399.                                                                                  | 7.3            | 85          |
| 58 | Enhancement in the Performance of Ultrathin Hematite Photoanode for Water Splitting by an Oxide<br>Underlayer. Advanced Materials, 2012, 24, 2699-2702.                                                    | 11.1           | 271         |
| 59 | Triblockâ€Terpolymerâ€Directed Selfâ€Assembly of Mesoporous TiO <sub>2</sub> : Highâ€Performance<br>Photoanodes for Solidâ€&tate Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2012, 2, 676-682. | 10.2           | 58          |
| 60 | A 3D Optical Metamaterial Made by Selfâ€Assembly. Advanced Materials, 2012, 24, OP23-7.                                                                                                                    | 11.1           | 288         |
| 61 | Improved conductivity in dye-sensitised solar cells through block-copolymer confined<br>TiO <sub>2</sub> crystallisation. Energy and Environmental Science, 2011, 4, 225-233.                              | 15.6           | 88          |
| 62 | Tunable Mesoporous Bragg Reflectors Based on Blockâ€Copolymer Selfâ€Assembly. Advanced Materials,<br>2011, 23, 3664-3668.                                                                                  | 11.1           | 88          |
| 63 | Mesoporous Bragg reflectors: block-copolymer self-assembly leads to building blocks with well defined continuous pores and high control over optical properties. , 2011, , .                               |                | 2           |
| 64 | Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells. Proceedings of SPIE, 2011, , .                                                                       | 0.8            | 3           |
| 65 | Control of Solidâ€&tate Dyeâ€&ensitized Solar Cell Performance by Blockâ€Copolymerâ€Directed<br>TiO <sub>2</sub> Synthesis. Advanced Functional Materials, 2010, 20, 1787-1796.                            | 7.8            | 131         |
| 66 | Enhanced photocatalytic properties in well-ordered mesoporous WO3. Chemical Communications, 2010, 46, 7620.                                                                                                | 2.2            | 98          |
| 67 | Ordered Three- and Five-ply Nanocomposites from ABC Block Terpolymer Microphase Separation with<br>Niobia and Aluminosilicate Sols. Chemistry of Materials, 2009, 21, 5466-5473.                           | 3.2            | 64          |
| 68 | Three-Component Porousâ^'Carbonâ î'Titania Nanocomposites through Self-Assembly of ABCBA Block<br>Terpolymers with Titania Sols. Macromolecules, 2009, 42, 6682-6687.                                      | 2.2            | 31          |
| 69 | Nanostructured carbon–crystalline titania composites from microphase separation of poly(ethylene) Tj ETQq1 1                                                                                               | 9.78431<br>2.2 | 4ˌʒgBT /Ove |
| 70 | Amorphization of Pseudocapacitive Tâ^'Nb <sub>2</sub> O <sub>5</sub> Accelerates Lithium Diffusivity as Revealed Using Tunable Isomorphic Architectures. Batteries and Supercaps, 0, , .                   | 2.4            | 3           |
| 71 | Faster Intercalation Pseudocapacitance Enabled by Adjustable Amorphous Titania where Tunable<br>Isomorphic Architectures Reveal Accelerated Lithium Diffusivity. Batteries and Supercaps, 0, , .           | 2.4            | 4           |