
Anne Aimable

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3662108/publications.pdf Version: 2024-02-01

ANNE AIMARIE

#	Article	IF	CITATIONS
1	Freeze granulation and spray drying of mixed granules of Al2O3. Powder Technology, 2022, 395, 280-289.	2.1	7
2	Organic Additives in Ceramic Processing. , 2021, , 103-111.		2
3	Study of the aggregation behavior of Janus particles by coupling experiments and Brownian dynamics simulations. Journal of Colloid and Interface Science, 2021, 583, 222-233.	5.0	10
4	Porous granules by freeze granulation of Pickering emulsions stabilized with halloysite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124156.	2.3	10
5	An experimental and simulation study of heteroaggregation in a binary mixture of alumina and silica colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125350.	2.3	9
6	High-purity synthesis of La2SiO5 by solid-state reaction between La2O3 and different characteristics of SiO2. Ceramics International, 2020, 46, 25546-25555.	2.3	3
7	Brownian dynamics simulations of one-patch inverse patchy particles. Physical Chemistry Chemical Physics, 2019, 21, 23447-23458.	1.3	9
8	Influence of different surfactants on Pickering emulsions stabilized by submicronic silica particles. Journal of Colloid and Interface Science, 2018, 520, 127-133.	5.0	52
9	Role of Electrostatic Interactions in Oil-in-Water Emulsions Stabilized by Heteroaggregation: An Experimental and Simulation Study. Langmuir, 2018, 34, 15795-15803.	1.6	15
10	Synthesis and characterization of fluorinated anatase nanoparticles and subsequent N-doping for efficient visible light activated photocatalysis. Colloids and Surfaces B: Biointerfaces, 2018, 171, 445-450.	2.5	33
11	Processing alumina spheres by a colloidal route using silica-polystyrene hybrid nanoparticles. Journal of the European Ceramic Society, 2017, 37, 5149-5156.	2.8	1
12	Synthesis and Sintering of ZnO Nanopowders. Technologies, 2017, 5, 28.	3.0	9
13	Influence of the electrostatic interactions in a Pickering emulsion polymerization for the synthesis of silica–polystyrene hybrid nanoparticles. Journal of Colloid and Interface Science, 2015, 448, 306-314.	5.0	44
14	Synthesis of fluorinated ceramic Janus particles via a Pickering emulsion method. Journal of Colloid and Interface Science, 2015, 450, 174-181.	5.0	40
15	Oil-in-water Pickering emulsions stabilized by phyllosilicates at high solid content. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 463, 85-92.	2.3	49
16	Aqueous suspensions of glass silicate dielectric powders for ink-jet printing applications. Powder Technology, 2014, 266, 303-311.	2.1	5
17	Modification of titania nanoparticles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing. Journal of Materials Research, 2013, 28, 354-361.	1.2	21
18	Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment. Cement and Concrete Research, 2011, 41, 1330-1338.	4.6	69

ANNE AIMABLE

#	Article	IF	CITATIONS
19	Precipitation of Nanosized and Nanostructured Powders: Process Intensification and Scaleâ€Out Using a Segmented Flow Tubular Reactor (SFTR). Chemical Engineering and Technology, 2011, 34, 344-352.	0.9	28
20	Synthesis of porous and nanostructured particles of CuO via a copper oxalate route. Powder Technology, 2011, 208, 467-471.	2.1	25
21	Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution. Journal of the European Ceramic Society, 2010, 30, 591-598.	2.8	71
22	Innovative High-Surface-Area CuO Pretreated Cotton Effective in Bacterial Inactivation under Visible Light. ACS Applied Materials & Interfaces, 2010, 2, 2547-2552.	4.0	57
23	Contribution of Aggregation to the Growth Mechanism of Seeded Calcium Carbonate Precipitation in the Presence of Polyacrylic Acid. Journal of Physical Chemistry B, 2010, 114, 12058-12067.	1.2	27
24	Growth Modification of Seeded Calcite by Carboxylic Acid Oligomers and Polymers: Toward an Understanding of Complex Growth Mechanisms. Crystal Growth and Design, 2010, 10, 3956-3963.	1.4	32
25	Additive-Assisted Aqueous Synthesis of BaTiO ₃ Nanopowders. Crystal Growth and Design, 2010, 10, 3996-4004.	1.4	20
26	Comparison of two innovative precipitation systems for ZnO and Al-doped ZnO nanoparticle synthesis. Processing and Application of Ceramics, 2010, 4, 107-114.	0.4	13
27	Nanopowder metrology and nanoparticle size measurement: Towards the development and testing of protocols. Processing and Application of Ceramics, 2010, 4, 157-166.	0.4	15
28	Characteristics of LiFePO4 obtained through a one step continuous hydrothermal synthesis process working in supercritical water. Solid State Ionics, 2009, 180, 861-866.	1.3	41
29	Continuous hydrothermal synthesis of inorganic nanopowders in supercritical water: Towards a better control of the process. Powder Technology, 2009, 190, 99-106.	2.1	58
30	Electron-microscopic observation of BaTiO3 prepared by additive assisted aqueous synthesis. Microscopy and Microanalysis, 2009, 15, 51-52.	0.2	0
31	Continuous hydrothermal synthesis of nanometric BaZrO3 in supercritical water. Journal of Solid State Chemistry, 2008, 181, 183-189.	1.4	36