
Therese E Johnston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3661736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk Factors for Stress Fractures in Female Runners: Results of a Survey. International Journal of Sports Physical Therapy, 2021, 16, 72-86.	1.3	1
2	A Clinical Practice Guideline for the Use of Ankle-Foot Orthoses and Functional Electrical Stimulation Post-Stroke. Journal of Neurologic Physical Therapy, 2021, 45, 112-196.	1.4	19
3	Graph theoretical structural connectome analysis of the brain in patients with chronic spinal cord injury: preliminary investigation. Spinal Cord Series and Cases, 2021, 7, 60.	0.6	2
4	Characterizing Cycling Smoothness and Rhythm in Children With and Without Cerebral Palsy. Frontiers in Rehabilitation Sciences, 2021, 2, .	1.2	1
5	Physiological Factors of Female Runners With and Without Stress Fracture Histories: A Pilot Study. Sports Health, 2020, 12, 334-340.	2.7	8
6	Perceptions of risk for stress fractures: A qualitative study of female runners with and without stress fracture histories. Physical Therapy in Sport, 2020, 43, 143-150.	1.9	1
7	Bone Mineral Density Testing in Spinal Cord Injury: 2019 ISCD Official Position. Journal of Clinical Densitometry, 2019, 22, 554-566.	1.2	56
8	Relationship Between Body Positioning, Muscle Activity, and Spinal Kinematics in Cyclists With and Without Low Back Pain. Sports Health, 2017, 9, 75-79.	2.7	31
9	THE INFLUENCE OF EXTRINSIC FACTORS ON KNEE BIOMECHANICS DURING CYCLING: A SYSTEMATIC REVIEW OF THE LITERATURE. International Journal of Sports Physical Therapy, 2017, 12, 1023-1033.	1.3	15
10	A comparison of acromion marker cluster calibration methods for estimating scapular kinematics during upper extremity ergometry. Journal of Biomechanics, 2016, 49, 1255-1258.	2.1	10
11	Musculoskeletal Effects of 2 Functional Electrical Stimulation Cycling Paradigms Conducted at Different Cadences for People With Spinal Cord Injury: A Pilot Study. Archives of Physical Medicine and Rehabilitation, 2016, 97, 1413-1422.	0.9	31
12	Cycling With Functional Electrical Stimulation After Spinal Cord Injury: What's in It for Me?. Archives of Physical Medicine and Rehabilitation, 2015, 96, 1553-1554.	0.9	2
13	Cycling with Functional Electrical Stimulation Before and After a Distal Femur Fracture in a Man with Paraplegia. Topics in Spinal Cord Injury Rehabilitation, 2015, 21, 275-281.	1.8	6
14	Health and fitness in pediatric spinal cord injury: Medical issues and the role of exercise. Journal of Pediatric Rehabilitation Medicine, 2013, 6, 35-44.	0.5	7
15	Muscle Changes Following Cycling and/or Electrical Stimulation in Pediatric Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2011, 92, 1937-1943.	0.9	34
16	Effects of a supported speed treadmill training exercise program on impairment and function for children with cerebral palsy. Developmental Medicine and Child Neurology, 2011, 53, 742-750.	2.1	59
17	Cycling With Functional Electrical Stimulation in an Adult With Spastic Diplegic Cerebral Palsy. Physical Therapy, 2011, 91, 970-982.	2.4	17
18	A Randomized Controlled Trial on the Effects of Cycling With and Without Electrical Stimulation on Cardiorespiratory and Vascular Health in Children With Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2009, 90, 1379-1388.	0.9	34

THERESE E JOHNSTON

#	Article	IF	CITATIONS
19	Impact of Cycling on Hip Subluxation in Children With Spinal Cord Injury. Journal of Pediatric Orthopaedics, 2009, 29, 402-405.	1.2	8
20	The Effectiveness of Progressively Increasing Stimulation Frequency and Intensity to Maintain Paralyzed Muscle Force During Repetitive Activation in Persons With Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2008, 89, 856-864.	0.9	22
21	The Effects of a Shank Guide on Cycling Biomechanics of an Adolescent With Cerebral Palsy: A Single-Case Study. Archives of Physical Medicine and Rehabilitation, 2008, 89, 2025-2030.	0.9	7
22	Biomechanics of recumbent cycling in adolescents with cerebral palsy with and without the use of a fixed shank guide. Gait and Posture, 2008, 27, 539-546.	1.4	3
23	Differences in pedal forces during recumbent cycling in adolescents with and without cerebral palsy. Clinical Biomechanics, 2008, 23, 248-251.	1.2	12
24	Lower extremity muscle activity during cycling in adolescents with and without cerebral palsy. Clinical Biomechanics, 2008, 23, 442-449.	1.2	27
25	Exercise Testing Using Upper Extremity Ergometry in Pediatric Spinal Cord Injury. Pediatric Physical Therapy, 2008, 20, 146-151.	0.6	11
26	Outcomes of a Home Cycling Program Using Functional Electrical Stimulation or Passive Motion for Children With Spinal Cord Injury: A Case Series. Journal of Spinal Cord Medicine, 2008, 31, 215-221.	1.4	43
27	Biomechanics of Submaximal Recumbent Cycling in Adolescents With and Without Cerebral Palsy. Physical Therapy, 2007, 87, 572-585.	2.4	26
28	Biomechanical Considerations for Cycling Interventions in Rehabilitation. Physical Therapy, 2007, 87, 1243-1252.	2.4	38
29	Quality of Life in Children with Spinal Cord Injury. Pediatric Physical Therapy, 2007, 19, 296-300.	0.6	28
30	Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles. Muscle and Nerve, 2007, 35, 471-478.	2.2	21
31	Mathematical model that predicts the force–intensity and force–frequency relationships after spinal cord injuries. Muscle and Nerve, 2007, 36, 214-222.	2.2	19
32	Immediate effect of percutaneous intramuscular stimulation during gait in children with cerebral palsy: a feasibility study. Developmental Medicine and Child Neurology, 2007, 47, 684-690.	2.1	2
33	Contractile Properties and the Force-Frequency Relationship of the Paralyzed Human Quadriceps Femoris Muscle. Physical Therapy, 2006, 86, 788-799.	2.4	41
34	DIFFERENCES IN SCORES BETWEEN CHILDREN WITH SPINAL CORD INJURY AND THEIR PARENTS USING THE PEDIATRIC QUALITY OF LIFE INVENTORY. Pediatric Physical Therapy, 2006, 18, 94-95.	0.6	1
35	Issues Surrounding Protection and Assent in Pediatric Research. Pediatric Physical Therapy, 2006, 18, 133-140.	0.6	10
36	Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle. Physical Therapy, 2006, 86, 788-99.	2.4	15

THERESE E JOHNSTON

#	Article	IF	CITATIONS
37	Switching stimulation patterns improves performance of paralyzed human quadriceps muscle. Muscle and Nerve, 2005, 31, 581-588.	2.2	21
38	Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries. Muscle and Nerve, 2005, 31, 702-712.	2.2	31
39	Strengthening of Partially Denervated Knee Extensors Using Percutaneous Electric Stimulation in a Young Man With Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2005, 86, 1037-1042.	0.9	12
40	Strategies That Improve Paralyzed Human Quadriceps Femoris Muscle Performance During Repetitive, Nonisometric Contractions. Archives of Physical Medicine and Rehabilitation, 2005, 86, 2157-2164.	0.9	30
41	Immediate effect of percutaneous intramuscular stimulation during gait in children with cerebral palsy: a feasibility study. Developmental Medicine and Child Neurology, 2005, 47, 684.	2.1	25
42	Outcomes in Upright Mobility in Individuals with a Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2005, 10, 94-108.	1.8	5
43	Direct effect of percutaneous electric stimulation during gait in children with hemiplegic cerebral palsy: a report of 2 cases. Archives of Physical Medicine and Rehabilitation, 2004, 85, 339-343.	0.9	29
44	Comparison of Percutaneous and Surface Functional Electrical Stimulation During Gait in a Child with Hemiplegic Cerebral Palsy. American Journal of Physical Medicine and Rehabilitation, 2004, 83, 798-805.	1.4	27
45	Use of Functional Electrical Stimulation to Augment Traditional Orthopaedic Surgery in Children With Cerebral Palsy. Journal of Pediatric Orthopaedics, 2004, 24, 283-291.	1.2	37
46	Energy cost of walking in children with cerebral palsy: relation to the Gross Motor Function Classification System. Developmental Medicine and Child Neurology, 2004, 46, 34-8.	2.1	46
47	Energy cost of walking in children with cerebral palsy: relation to the Gross Motor Function Classification System. Developmental Medicine and Child Neurology, 2004, 46, 34-38.	2.1	85
48	The Effects of a Neuromuscular Electrical Stimulation Home Program on Impairments and Functional Skills of a Child with Spastic Diplegic Cerebral Palsy: A Case Report. Pediatric Physical Therapy, 2003, 15, 153-158.	0.6	21
49	Technical Perspective Functional Electrical Stimulation For Augmented Walking In Adolescents With Incomplete Spinal Cord Injury. Journal of Spinal Cord Medicine, 2003, 26, 390-400.	1.4	34