Maria Victoria Martinez Huerta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3661710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: A review. Journal of Energy Chemistry, 2022, 67, 101-137.	12.9	109
2	Transforming Waste Clamshell into Highly Selective Nanostructured Catalysts for Solvent Free Liquid Phase Oxidation of Benzyl Alcohol. Catalysts, 2022, 12, 155.	3.5	4
3	Transformation of CoFe2O4 spinel structure into active and robust CoFe alloy/N-doped carbon electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 625, 70-82.	9.4	14
4	Palladium nanoparticles supported on silicate-based nanohybrid material: highly active and eco-friendly catalyst for reduction of nitrobenzene at ambient conditions. Inorganic and Nano-Metal Chemistry, 2021, 51, 569-578.	1.6	2
5	Effect of secondary heteroatom (S, P) in N-doped reduced graphene oxide catalysts to oxygen reduction reaction. Molecular Catalysis, 2021, 502, 111372.	2.0	11
6	Carbon nanofiber-supported tantalum oxides as durable catalyst for the oxygen evolution reaction in alkaline media. Renewable Energy, 2021, 178, 307-317.	8.9	13
7	Titanium Dioxide/N-Doped Graphene Composites as Non-Noble Bifunctional Oxygen Electrocatalysts. Industrial & Engineering Chemistry Research, 2021, 60, 18817-18830.	3.7	8
8	Titanium carbonitride–graphene composites assembled with organic linkers as electrocatalytic supports for methanol oxidation reaction. Catalysis Today, 2020, 356, 101-109.	4.4	4
9	Effect of phosphomolybdic acid on the catalytic behavior of bifunctional Ptâ€Cr/nanocrystalline Y zeolite in hydroisomerization of <i>n</i> â€octane. Journal of the Chinese Chemical Society, 2020, 67, 267-276.	1.4	5
10	Crystal structure features of CH ₃ NH ₃ PbI _{3â^`x} Br _x hybrid perovskites prepared by ball milling: a route to more stable materials. CrystEngComm, 2020, 22, 767-775.	2.6	24
11	CoTiO3/NrGO nanocomposites for oxygen evolution and oxygen reduction reactions: Synthesis and electrocatalytic performance. Electrochimica Acta, 2020, 331, 135396.	5.2	30
12	Electrodeposition of Cu2ZnSnS4 thin films onto TiO2 nanorods for photocatalytic application: Effect of deposition time. Inorganic Chemistry Communication, 2020, 122, 108298.	3.9	19
13	Non-precious Melamine/Chitosan Composites for the Oxygen Reduction Reaction: Effect of the Transition Metal. Frontiers in Materials, 2020, 7, .	2.4	4
14	Ni-Based Composites from Chitosan Biopolymer a One-Step Synthesis for Oxygen Evolution Reaction. Catalysts, 2019, 9, 471.	3.5	10
15	Tantalum-based electrocatalysts prepared by a microemulsion method for the oxygen reduction and evolution reactions. Electrochimica Acta, 2019, 317, 261-271.	5.2	18
16	Supporting IrO2 and IrRuO nanoparticles on TiO2 and Nb-doped TiO2 nanotubes as electrocatalysts for the oxygen evolution reaction. Journal of Energy Chemistry, 2019, 34, 227-239.	12.9	48
17	Dynamic Disorder Restriction of Methylammonium (MA) Groups in Chlorideâ€Doped MAPbBr ₃ Hybrid Perovskites: A Neutron Powder Diffraction Study. Chemistry - A European Journal, 2019, 25, 4496-4500.	3.3	9
18	Carbon supported PdM (M = Fe, Co) electrocatalysts for formic acid oxidation. Influence of the Fe and Co precursors. International Journal of Hydrogen Energy, 2019, 44, 1640-1649.	7.1	33

#	Article	IF	CITATIONS
19	Crystal Growth, Structural Phase Transitions, and Optical Gap Evolution of CH ₃ NH ₃ Pb(Br _{1–<i>x</i>} Cl _{<i>x</i>}) ₃ Perovskites. Crystal Growth and Design, 2019, 19, 918-924.	3.0	22
20	The role of cobalt and copper nanoparticles on performance of magnetite-rich waste material in Fenton reaction. International Journal of Environmental Science and Technology, 2019, 16, 373-382.	3.5	9
21	Bifunctional N-doped graphene Ti and Co nanocomposites for the oxygen reduction and evolution reactions. Renewable Energy, 2018, 125, 182-192.	8.9	51
22	On the Nature of the Unusual Redox Cycle at the Vanadia Ceria Interface. Journal of Physical Chemistry C, 2018, 122, 1197-1205.	3.1	24
23	PtSn nanoparticles supported on titanium carbonitride for the ethanol oxidation reaction. Applied Catalysis B: Environmental, 2018, 237, 382-391.	20.2	39
24	Electrocatalysts for low temperature fuel cells. Catalysis Today, 2017, 285, 3-12.	4.4	50
25	Effect of molybdophosphoric acid in iron and cobalt graphene/chitosan composites for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 28093-28101.	7.1	12
26	Elucidating the Methylammonium (MA) Conformation in MAPbBr ₃ Perovskite with Application in Solar Cells. Inorganic Chemistry, 2017, 56, 14214-14219.	4.0	64
27	Optimization of alkaline catalytic inks for three-electrode electrochemical half-cell measurements. International Journal of Hydrogen Energy, 2016, 41, 19656-19663.	7.1	9
28	Biodiesel Production Using Calcined Waste Filter Press Cake from a Sugar Manufacturing Facility as a Highly Economic Catalyst. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 773-779.	1.9	7
29	Platinum border atoms as dominant active site during the carbon monoxide electrooxidation reaction. International Journal of Hydrogen Energy, 2016, 41, 19674-19683.	7.1	15
30	Oxidation of cyclohexanol to adipic acid with molecular oxygen catalyzed by ZnO nanoparticles immobilized on hydroxyapatite. RSC Advances, 2016, 6, 78487-78495.	3.6	9
31	Promotion of oxygen reduction and water oxidation at Pt-based electrocatalysts by titanium carbonitride. Applied Catalysis B: Environmental, 2016, 183, 53-60.	20.2	43
32	Synthesis and characterization of Au nanocatalyst on modifed bentonite and silica and their applications for solvent free oxidation of cyclohexene with molecular oxygen. Journal of Molecular Catalysis A, 2015, 406, 118-126.	4.8	21
33	Role of surface vanadium oxide coverage support on titania for the simultaneous removal of o-dichlorobenzene and NOx from waste incinerator flue gas. Catalysis Today, 2015, 254, 2-11.	4.4	39
34	In situ FTIR and Raman study on the distribution and reactivity of surface vanadia species in V 2 O 5 /CeO 2 catalysts. Journal of Molecular Catalysis A, 2015, 408, 75-84.	4.8	25
35	The role of Sn, Ru and Ir on the ethanol electrooxidation on Pt3M/TiCN electrocatalysts. International Journal of Hydrogen Energy, 2015, 40, 14519-14528.	7.1	20
36	Titanium carbide and carbonitride electrocatalyst supports: modifying Pt–Ti interface properties by electrochemical potential cycling. Journal of Materials Chemistry A, 2014, 2, 18786-18790.	10.3	48

MARIA VICTORIA MARTINEZ

#	Article	IF	CITATIONS
37	Synthesis of biodiesel from Nigella sativa seed oil using surfactant-BrÃ,nsted acidic-combined ionic liquid as catalyst. Fuel Processing Technology, 2014, 118, 296-301.	7.2	37
38	The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. Journal of Materials Chemistry B, 2014, 2, 706-717.	5.8	66
39	Esterification of fatty acids by new ionic liquids as acid catalysts. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 431-435.	5.3	53
40	Electrocatalytic stability of Ti based-supported Pt3Ir nanoparticles for unitized regenerative fuel cells. International Journal of Hydrogen Energy, 2014, 39, 5477-5484.	7.1	47
41	Synthesis and characterization of gold nanoparticles supported on thiol functionalized chitosan for solvent-free oxidation of cyclohexene with molecular oxygen. Journal of Molecular Catalysis A, 2013, 379, 340-349.	4.8	22
42	TiC, TiCN, and TiN Supported Pt Electrocatalysts for CO and Methanol Oxidation in Acidic and Alkaline Media. Journal of Physical Chemistry C, 2013, 117, 20769-20777.	3.1	92
43	Hybrid chitosan derivative–carbon support for oxygen reduction reactions. RSC Advances, 2013, 3, 5378.	3.6	21
44	Catalyst support effects at the oxygen electrode of unitized regenerative fuel cells. Catalysis Today, 2013, 210, 67-74.	4.4	37
45	Carbon-Supported PtRuMo Electrocatalysts for Direct Alcohol Fuel Cells. Catalysts, 2013, 3, 811-838.	3.5	12
46	Ethanol oxidation on PtRuMo/C catalysts: In situ FTIR spectroscopy and DEMS studies. International Journal of Hydrogen Energy, 2012, 37, 7131-7140.	7.1	49
47	Electrooxidation of CO and methanol on well-characterized carbon supported PtxSn electrodes. Effect of crystal structure. International Journal of Hydrogen Energy, 2012, 37, 7109-7118.	7.1	42
48	Electrochemical stability of carbon nanofibers in proton exchange membrane fuel cells. Electrochimica Acta, 2011, 56, 9370-9377.	5.2	31
49	Electrooxidation of H2/CO on carbon-supported PtRu-MoO nanoparticles for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2011, 36, 14590-14598.	7.1	26
50	Pt and PtRu electrocatalysts supported on carbon xerogels for direct methanol fuel cells. Journal of Power Sources, 2011, 196, 4226-4235.	7.8	59
51	Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. International Journal of Hydrogen Energy, 2010, 35, 9934-9942.	7.1	102
52	Highly dispersed molybdenum carbide as non-noble electrocatalyst for PEM fuel cells: Performance for CO electrooxidation. International Journal of Hydrogen Energy, 2010, 35, 7881-7888.	7.1	29
53	PtRuMo/C catalysts for direct methanol fuel cells: Effect of the pretreatment on the structural characteristics and methanol electrooxidation. International Journal of Hydrogen Energy, 2010, 35, 11478-11488.	7.1	67
54	Electrochemical activation of nanostructured carbon-supported PtRuMo electrocatalyst for methanol oxidation. Electrochimica Acta, 2010, 55, 7634-7642.	5.2	22

MARIA VICTORIA MARTINEZ

#	Article	IF	CITATIONS
55	The effect of the Mo precursor on the nanostructure and activity of PtRuMo electrocatalysts for proton exchange membrane fuel cells. Catalysis Today, 2010, 158, 12-21.	4.4	25
56	Study of the Synthesis Conditions of Carbon Nanocoils for Energetic Applications. Energy & Fuels, 2010, 24, 3361-3365.	5.1	23
57	CO tolerant PtRu–MoOx nanoparticles supported on carbon nanofibers for direct methanol fuel cells. Journal of Power Sources, 2009, 186, 299-304.	7.8	55
58	Identification of Ru phases in PtRu based electrocatalysts and relevance in the methanol electrooxidation reaction. Catalysis Today, 2009, 143, 69-75.	4.4	26
59	Tailoring and structure of PtRu nanoparticles supported on functionalized carbon for DMFC applications: New evidence of the hydrous ruthenium oxide phase. Applied Catalysis B: Environmental, 2009, 88, 505-514.	20.2	94
60	The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming. Applied Catalysis B: Environmental, 2009, 89, 149-159.	20.2	218
61	Monitoring the states of vanadium oxide during the transformation of TiO2 anatase-to-rutile under reactive environments: H2 reduction and oxidative dehydrogenation of ethane. Catalysis Communications, 2009, 11, 15-19.	3.3	49
62	Study of the surface and redox properties of ceria–zirconia oxides. Applied Catalysis A: General, 2008, 337, 86-96.	4.3	213
63	<i>Operando</i> Raman-GC Study on the Structureâ^'Activity Relationships in V ⁵⁺ /CeO ₂ Catalyst for Ethane Oxidative Dehydrogenation: The Formation of CeVO ₄ . Journal of Physical Chemistry C, 2008, 112, 11441-11447.	3.1	65
64	Novel Synthesis Method of CO-Tolerant PtRuâ^'MoO _{<i>x</i>} Nanoparticles: Structural Characteristics and Performance for Methanol Electrooxidation. Chemistry of Materials, 2008, 20, 4249-4259.	6.7	99
65	Changes in Ceria-Supported Vanadium Oxide Catalysts during the Oxidative Dehydrogenation of Ethane and Temperature-Programmed Treatments. Journal of Physical Chemistry C, 2007, 111, 18708-18714.	3.1	55
66	Functionalization of carbon support and its influence on the electrocatalytic behaviour of Pt/C in H2 and CO electrooxidation. Carbon, 2006, 44, 1919-1929.	10.3	59
67	Ammoxidation of propane over V-Sb and V-Sb-Nb mixed oxides. Applied Catalysis A: General, 2006, 298, 1-7.	4.3	38
68	Methanol electrooxidation on PtRu nanoparticles supported on functionalised carbon black. Catalysis Today, 2006, 116, 422-432.	4.4	68
69	Structural investigation of Ce2Zr2O8 after redox treatments which lead to low temperature reduction. Topics in Catalysis, 2006, 41, 35-42.	2.8	26
70	Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: Relationship between molecular structures and chemical reactivity. Catalysis Today, 2006, 118, 279-287.	4.4	171
71	Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications. Applied Catalysis B: Environmental, 2006, 69, 75-84.	20.2	71
72	Enhanced methanol electrooxidation activity of PtRu nanoparticles supported on H2O2-functionalized carbon black. Carbon, 2005, 43, 3002-3005.	10.3	70

MARIA VICTORIA MARTINEZ

#	Article	IF	CITATIONS
73	Preparation of carbon supported Pt and PtRu nanoparticles from microemulsion. Applied Catalysis A: General, 2005, 285, 24-35.	4.3	103
74	Variations in the Extent of Pyrochlore-Type Cation Ordering in Ce2Zr2O8: A tâ€~â^'κ Pathway to Low-Temperature Reduction. Chemistry of Materials, 2005, 17, 1157-1166.	6.7	70
75	Nature of the vanadia?ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. Journal of Catalysis, 2004, 225, 240-248.	6.2	143
76	Sulfur-Directed Synthesis of Enantiopure Hydroxy 2-Sulfinyl Butadienesâ€. Journal of Organic Chemistry, 2004, 69, 1978-1986.	3.2	14
77	Identification and roles of the different active sites in supported vanadia catalysts by in situ techniques. Studies in Surface Science and Catalysis, 2000, 130, 3125-3130.	1.5	35
78	Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane. Catalysis Today, 2000, 61, 295-301.	4.4	115
79	Vanadium oxide loaded tin–titanium phosphates. Solid State Sciences, 2000, 2, 177-185.	0.7	4
80	Sulfoxide-Controlled SN2â€~ Displacements between Cyanocuprates and Epoxy Vinyl Sulfoxides1. Journal of Organic Chemistry, 2000, 65, 6462-6473.	3.2	26
81	Nature of Vanadium Sites in V/α-Ti Phosphate Catalysts for the Oxidative Dehydrogenation of Ethane. Journal of Catalysis, 1999, 181, 280-284.	6.2	19
82	Sulfoxide-controlled SN2′ displacements between cyanocuprates and epoxy vinyl sulfoxides. Tetrahedron Letters, 1996, 37, 8031-8034.	1.4	23