Xing-Xing Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/366160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nature Microbiology, 2022, 7, 831-843.	13.3	44
2	Defining upstream enhancing and inhibiting sequence patterns for plant peroxisome targeting signal type 1 using largeâ€scale <i>in silico</i> and <i>in vivo</i> analyses. Plant Journal, 2022, 111, 567-582.	5.7	5
3	PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics, 2021, 37, 2325-2331.	4.1	69
4	Dissecting Incongruence between Concatenation- and Quartet-Based Approaches in Phylogenomic Data. Systematic Biology, 2021, 70, 997-1014.	5.6	28
5	A genome-scale phylogeny of the kingdom Fungi. Current Biology, 2021, 31, 1653-1665.e5.	3.9	170
6	Rooting the Animal Tree of Life. Molecular Biology and Evolution, 2021, 38, 4322-4333.	8.9	93
7	PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. PLoS Biology, 2021, 19, e3001365.	5.6	51
8	Examination of Gene Loss in the DNA Mismatch Repair Pathway and Its Mutational Consequences in a Fungal Phylum. Genome Biology and Evolution, 2021, 13, .	2.5	10
9	Repeated horizontal gene transfer of <i>GAL</i> actose metabolism genes violates Dollo's law of irreversible loss. Genetics, 2021, 217, .	2.9	18
10	Feature frequency profile-based phylogenies are inaccurate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31580-31581.	7.1	3
11	An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nature Communications, 2020, 11, 6096.	12.8	32
12	Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. Science Advances, 2020, 6, .	10.3	84
13	Recurrent Loss of abaA, a Master Regulator of Asexual Development in Filamentous Fungi, Correlates with Changes in Genomic and Morphological Traits. Genome Biology and Evolution, 2020, 12, 1119-1130.	2.5	16
14	Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nature Plants, 2020, 6, 215-222.	9.3	88
15	ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biology, 2020, 18, e3001007.	5.6	237
16	A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera <i>Aspergillus</i> and <i>Penicillium</i> . MBio, 2019, 10, .	4.1	106
17	Multiple Reinventions of Mating-type Switching during Budding Yeast Evolution. Current Biology, 2019, 29, 2555-2562.e8.	3.9	33
18	Genomic features and evolution of the conditionally dispensable chromosome in the tangerine pathotype of <i>Alternaria alternata</i> . Molecular Plant Pathology, 2019, 20, 1425-1438.	4.2	23

XING-XING SHEN

#	Article	IF	CITATIONS
19	The Impact of Natural Selection on the Evolution and Function of Placentally Expressed Galectins. Genome Biology and Evolution, 2019, 11, 2574-2592.	2.5	16
20	Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biology, 2019, 17, e3000255.	5.6	116
21	Eukaryotic Acquisition of a Bacterial Operon. Cell, 2019, 176, 1356-1366.e10.	28.9	74
22	Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets. Molecular Biology and Evolution, 2018, 35, 486-503.	8.9	147
23	Selective base excision repair of DNA damage by the nonâ€baseâ€flipping DNA glycosylase AlkC. EMBO Journal, 2018, 37, 63-74.	7.8	17
24	Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell, 2018, 175, 1533-1545.e20.	28.9	445
25	Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11030-11035.	7.1	75
26	Structural Biology of the HEAT‣ike Repeat Family of DNA Glycosylases. BioEssays, 2018, 40, e1800133.	2.5	9
27	Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nature Communications, 2018, 9, 1887.	12.8	70
28	Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. ELife, 2018, 7, .	6.0	67
29	Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology and Evolution, 2017, 1, 126.	7.8	365
30	A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference. Genome Biology and Evolution, 2016, 8, 2565-2580.	2.5	70
31	Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data. C3: Genes, Genomes, Genetics, 2016, 6, 3927-3939.	1.8	187
32	Enlarged Multilocus Data set Provides Surprisingly Younger Time of Origin for the Plethodontidae, the Largest Family of Salamanders. Systematic Biology, 2016, 65, 66-81.	5.6	64
33	A Versatile and Highly Efficient Toolkit Including 102 Nuclear Markers for Vertebrate Phylogenomics, Tested by Resolving the Higher Level Relationships of the Caudata. Molecular Biology and Evolution, 2013, 30, 2235-2248.	8.9	76
34	One Thousand Two Hundred Ninety Nuclear Genes from a Genome-Wide Survey Support Lungfishes as the Sister Group of Tetrapods. Molecular Biology and Evolution, 2013, 30, 1803-1807.	8.9	45
35	The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested PCR. PLoS ONE, 2012, 7, e39256.	2.5	28
36	Multiple Genome Alignments Facilitate Development of NPCL Markers: A Case Study of Tetrapod Phylogeny Focusing on the Position of Turtles. Molecular Biology and Evolution, 2011, 28, 3237-3252.	8.9	89