
## Jason R Bochinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3661462/publications.pdf Version: 2024-02-01



LASON P ROCHINSKI

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Phase Space Manipulation of Cold Free Radical OH Molecules. Physical Review Letters, 2003, 91, 243001.                                                                          | 7.8  | 143       |
| 2  | Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology, 2011, 22, 345301.                                                                    | 2.6  | 123       |
| 3  | Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer, 2010, 51, 4928-4936.                                                                      | 3.8  | 117       |
| 4  | Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals. Physical Review A, 2006, 73, .                            | 2.5  | 106       |
| 5  | Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials. Polymer, 2011, 52, 1674-1685.                       | 3.8  | 74        |
| 6  | Metal Nanoparticles Acting as Lightâ€Activated Heating Elements within Composite Materials. Advanced<br>Functional Materials, 2012, 22, 5259-5270.                              | 14.9 | 63        |
| 7  | Cold free-radical molecules in the laboratory frame. Physical Review A, 2004, 70, .                                                                                             | 2.5  | 55        |
| 8  | Driving the driven atom: Spectral signatures. Physical Review A, 1997, 56, R4381-R4384.                                                                                         | 2.5  | 49        |
| 9  | Thermal Annealing of Polymer Nanocomposites via Photothermal Heating: Effects on Crystallinity and Spherulite Morphology. Macromolecules, 2013, 46, 8596-8607.                  | 4.8  | 43        |
| 10 | Effect of Solution Parameters on Spontaneous Jet Formation and Throughput in Edge Electrospinning<br>from a Fluid-Filled Bowl. Macromolecules, 2012, 45, 6527-6537.             | 4.8  | 42        |
| 11 | Efficient Stark deceleration of cold polar molecules. European Physical Journal D, 2004, 31, 351-358.                                                                           | 1.3  | 39        |
| 12 | Anisotropic Thermal Processing of Polymer Nanocomposites via the Photothermal Effect of Gold Nanorods. Particle and Particle Systems Characterization, 2013, 30, 193-202.       | 2.3  | 34        |
| 13 | Spatial temperature mapping within polymer nanocomposites undergoing ultrafast photothermal heating via gold nanorods. Nanoscale, 2014, 6, 15236-15247.                         | 5.6  | 33        |
| 14 | Power-dependent loss from an ytterbium magneto-optic trap. Physical Review A, 2000, 61, .                                                                                       | 2.5  | 32        |
| 15 | Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods. Nanoscale, 2017, 9, 11605-11618. | 5.6  | 27        |
| 16 | Simultaneous multi-isotope trapping of ytterbium. Physical Review A, 2001, 63, .                                                                                                | 2.5  | 26        |
| 17 | Magnetic trapping of ytterbium and the alkaline-earth metals. Physical Review A, 2002, 66, .                                                                                    | 2.5  | 25        |
| 18 | Enhanced Crystallinity of Polymer Nanofibers without Loss of Nanofibrous Morphology via<br>Heterogeneous Photothermal Annealing. Macromolecules, 2016, 49, 9484-9492.           | 4.8  | 24        |

JASON R BOCHINSKI

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A pulsed, low-temperature beam of supersonically cooled free radical OH molecules. Chemical Physics<br>Letters, 2004, 395, 53-57.                                                                                                                          | 2.6  | 23        |
| 20 | <i>In situ</i> curing of liquid epoxy via gold-nanoparticle mediated photothermal heating.<br>Nanotechnology, 2017, 28, 065601.                                                                                                                            | 2.6  | 22        |
| 21 | Intrinsically Irreversible Multiphoton Laser Gain Mechanisms. Physical Review Letters, 1997, 78,<br>1432-1435.                                                                                                                                             | 7.8  | 22        |
| 22 | Experimental study of photon-echo size in optically thick media. Physical Review A, 1999, 60, R757-R760.                                                                                                                                                   | 2.5  | 21        |
| 23 | Dynamics within Alkylsiloxane Self-Assembled Monolayers Studied by Sensitive Dielectric Spectroscopy. ACS Nano, 2008, 2, 2392-2400.                                                                                                                        | 14.6 | 20        |
| 24 | Maximizing Spontaneous Jet Density and Nanofiber Quality in Unconfined Electrospinning: The Role of Interjet Interactions. Macromolecules, 2013, 46, 7352-7362.                                                                                            | 4.8  | 20        |
| 25 | Optical double-resonance cooled-atom spectroscopy. Physical Review A, 2001, 63, .                                                                                                                                                                          | 2.5  | 18        |
| 26 | Unconfined, melt edge electrospinning from multiple, spontaneous, self-organized polymer jets.<br>Materials Research Express, 2014, 1, 045304.                                                                                                             | 1.6  | 15        |
| 27 | Control of the electric field–polymer solution interaction by utilizing ultra-conductive fluids.<br>Polymer, 2014, 55, 6390-6398.                                                                                                                          | 3.8  | 15        |
| 28 | Probing magneto-optic trap dynamics through weak excitation of a coupled narrow-linewidth transition. Physical Review A, 2000, 61, .                                                                                                                       | 2.5  | 14        |
| 29 | Blending with Nonâ€responsive Polymers to Incorporate Nanoparticles into Shapeâ€Memory Materials and<br>Enable Photothermal Heating: The Effects of Heterogeneous Temperature Distribution.<br>Macromolecular Chemistry and Physics, 2014, 215, 2345-2356. | 2.2  | 13        |
| 30 | Vacuum-mediated multiphoton transitions. Physical Review A, 2001, 63, .                                                                                                                                                                                    | 2.5  | 11        |
| 31 | Photothermally-driven thermo-oxidative degradation of low density polyethylene: heterogeneous heating plus a complex reaction leads to homogeneous chemistry. Nanotechnology, 2019, 30, 475706.                                                            | 2.6  | 11        |
| 32 | Nanoparticle-based photothermal heating to drive chemical reactions within a solid: using inhomogeneous polymer degradation to manipulate mechanical properties and segregate carbonaceous by-products. Nanoscale, 2020, 12, 904-923.                      | 5.6  | 6         |
| 33 | Laser modulation technique for single isotope spectroscopic studies. Physical Review A, 2000, 61, .                                                                                                                                                        | 2.5  | 4         |
| 34 | Facile measurement of surface heat loss from polymer thin films via fluorescence thermometry.<br>Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 643-652.                                                                                   | 2.1  | 4         |
| 35 | Increasing ionic conductivity within thermoplastics via commercial additives results in a dramatic decrease in fiber diameter from melt electrospinning. Soft Matter, 2021, 17, 9264-9279.                                                                 | 2.7  | 3         |
| 36 | Tracking the complete degradation lifecycle of poly(ethyl cyanoacrylate): From induced photoluminescence to nitrogen-doped nano-graphene precursor residue. Polymer Degradation and Stability, 2022, 195, 109772.                                          | 5.8  | 2         |